Problem Set 2

Problem 1
Let ALG be a randomized algorithm with running time $O(n^3 + n + \sqrt{n})$ that outputs an optimal solution (for an unspecified optimization problem) with probability at least $\frac{1}{\sqrt{n \log n}}$. Give a number ℓ of independent repetitions such that repeating $\text{ALG} \ell$ times and returning the best solution results in an algorithm with success probability at least $1 - \frac{1}{n^7}$. What is the running time of the resulting algorithm?

Problem 2
Prove that the FastCut algorithm (without repetitions) has a running time of $O(n^2 \log n)$. Is this still true when t is set slightly larger, for example to $t := 1 + \lceil \frac{3}{4} n \rceil$?

Problem 3
We are given a data stream of numbers a_1, a_2, a_3, \ldots (of unknown length) and want to sample one number s. However, instead of choosing every item in the stream with the same probability, we want to achieve the following: After seeing a_i, we want that

$$\Pr(s = a_j) = \begin{cases} 2^{-(i-1)} & \text{for } j = 1 \\ 2^{-(i-j+1)} & \text{for } j \in \{2, \ldots, i\} \end{cases}.$$

1. To make sure that this defines a discrete probability measure, show that the sum of the desired probabilities $\sum_{j=1}^{i} \Pr(a_j)$ after seeing a_i is always 1.
2. Adapt ReservoirSampling such that it stores a number s which is equal to the different elements in the data stream with the desired probabilities.

Problem 4
Consider the following recursive and randomized algorithm:

$\text{RandomRecursion}(\ell)$

1. Print ℓ on the screen.
2. Toss a random coin.
3. If Heads, call $\text{RandomRecursion}(\ell + 1)$.
4. Toss a random coin.
5. If Heads, call $\text{RandomRecursion}(\ell + 1)$.

What is the probability that the call $\text{RandomRecursion}(0)$ finishes running after a finite time (does not run forever)?