

Multi-list Traversal Strategies (cf. [1])

David Kübel 21st of June 2016

University of Bonn

The multi-list traversal problem (MLTP)

$$\mathsf{TC}(\mathcal{S}, (\lambda_1, \lambda_2, \dots, \lambda_m)) = \sum_{1 \le i \le m} d_i,$$

 \mathcal{S} traversed *i*th list up to depth $d_i \leq \lambda_i$.

Definition (multi-list traversal problem - MLTP)

Given: Set Λ of *m* lists, each of unknown length. Aim: Reach end of one list (with small traversal costs).

Note: no costs for switching lists; traversal of a list can be continued.

- 1. Consider partially informed variant of MLTP Find reasonable strategy. (fixed depth traversal FDT) Define cost measure. $(\xi_{\Lambda}, \overline{\xi}_{\Lambda})$ Justification of the strategy/cost measure.
- Reconsider uninformed variant of MLTP
 Suggest online strategy. (hyperbolic traversal HT)
 Prove competitiveness w.r.t. new cost measures.

Consider partially informed variant of MLTP

- Given: Set Λ of m lists of known length, but unknown ordering. Aim: Reach end of one list with small traversal costs.
- \implies Lower bound for traversal costs is $\min_{1 \le i \le m} \lambda_i$.
- $\implies \qquad \text{Any strategy that traverses every list up to depth} \\ d \ge \min_{1 \le i \le m} \lambda_i \text{ is successful.}$

FIXED-DEPTH-TRAVERSAL

Input: Set Λ of m lists, fixed depth $d \in \mathbb{N}_0$

for *i* from 1 to *m* do traverse list λ_i up to depth *d*; end for

The alternative cost measure - worst case

Definition (intrinsic maximum traversal costs) The maximum traversal costs are defined as $MTC_{\Lambda}(FDT(d)) := \max_{\pi \in S_m} TC(FDT(d), \pi(\Lambda)).$ The intrinsic maximum traversal costs are defined as $\xi_{\Lambda} := \min_{1 \le k \le m} MTC_{\Lambda}(FDT(\lambda_k)).$

Theorem (cf. [1], Theorem 1) Reorder s.th. $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_m$, then $\xi_\Lambda = \min_{1 \le i \le m} i \cdot \lambda_i$

 $i_{\Lambda} := \underset{1 \leq i \leq m}{\operatorname{argmin}} i \cdot \lambda_i$ \rightsquigarrow Best FDT-strategy for Λ in the worst case.

The alternative cost measure - average case

Definition (intrinsic average traversal costs) The average traversal costs are defined as

$$\operatorname{ATC}_{\Lambda}(\operatorname{FDT}(\lambda_k)) := \underset{\pi \in S_m}{\operatorname{avg}} \operatorname{TC}(\operatorname{FDT}(\lambda_k), \pi(\Lambda)).$$

The intrinsic average traversal costs are defined as

$$\overline{\xi}_{\Lambda} := \min_{1 \le k \le m} \operatorname{ATC}_{\Lambda}(\operatorname{FDT}(\lambda_k)).$$

Theorem (cf. [1], Lemma 1) Reorder s.th. $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_m$, then $\overline{\xi}_{\Lambda} = \min_{1 \le i \le m} \frac{(m+1) \cdot \lambda_i}{m-i+2}$

 $\overline{i}_{\Lambda} := \underset{1 \leq i \leq m}{\operatorname{argmin}} \frac{\lambda_i}{m-i+2}$ \rightsquigarrow Best FDT-strategy for Λ in the average case.

- 1. The competitive ratio of breadth-first traversal (= $FDT(\lambda_m)$) is $\Omega(m)$ and the competitive ratio of depth-first traversal (= $FDT(\lambda_1)$) is unbounded.¹
- 2. No traversal strategy that is successful on all permutations of Λ , has fewer traversal costs than ξ_{Λ} in the worst case.²
- 3. Any traversal strategy that terminates with traversal costs of at most $\bar{\xi}_{\Lambda/3}$ on all presentations of Λ , fails with probability 1/2 on a random presentation of Λ .³

 $\rightsquigarrow \overline{\xi}_\Lambda \text{is } \theta\left(\frac{(m+1)\cdot\lambda_{\overline{i}_\Lambda}}{m-\overline{i}_\Lambda+2}\right)$

¹cf. [1], Theorem 3 ²cf. [1], Proof of Theorem 1 ³cf. [1], Lemma 2 and Theorem 2

Reconsider uninformed variant of MLTP

```
Given: Set \Lambda of m lists of unknown length.
Aim: Reach end of one list with small traversal costs.
```

```
HYPERBOLIC-TRAVERSAL
```

```
Input: List \Lambda
```

```
c \leftarrow 1;

while no list fully explored do

for i from 1 to m do

explore list i up to depth \lfloor \frac{c}{i} \rfloor;

end for

c \leftarrow c + 1;

end while
```

Theorem

HT solves MLTP with $O\left(\xi_{\Lambda}\cdot\ln(\min(m,\xi_{\Lambda}))\right)$ maximum traversal costs. 4

Theorem

HT solves the MLTP with $O\left(\overline{\xi}_{\Lambda} \cdot \ln(\min(m, \overline{\xi}_{\Lambda}))\right)$ in the average traversal costs. ⁵

Optimality

As D. Kirkpatrick shows in [1], HT is also optimal w.r.t. the alternative cost measure.

⁴cf. [1], Theorem 4 ⁵cf. [1], Theorem 6

D. G. Kirkpatrick. Hyperbolic dovetailing.

In Algorithms - ESA 2009, 17th Annual European Symposium, Copenhagen, Denmark, September 7-9, 2009. Proceedings, pages 516--527, 2009.