Online Motion Planning MA-INF 1314
Searching in streets!

Elmar Langetepe
University of Bonn
Rep.: Street

Def. Polygonal boundary chains P_L and P_R of P between s and t weakly visible.

Task: Start at s, find t!
Rep.: Lower Bound!

Theorem: No strategy attains a ratio better than $\sqrt{2}$ versus the length of the shortest path.

Beweis:

Detour of factor at least $\sqrt{2}$

![Diagram](image-url)
Rep.: Reasonable strategies!

- Rightmost left reflex vertex, leftmost right reflex vertex!
- Move into the wedge of c, v_l and v_r.
- One side-candidate vanishes, move directly to the other.
- Extreme vertices change over time.

\[v_r = v_1 \quad v_l = v_1 \]
Rep.: Funnel polygons!

- It is sufficient to analyse special streets.

- **Def.** Polygon, conve vertex s, two opening convex polygonal chains P_L and P_R starting in s ending at t_ℓ and t_r, respectively. Segment $\overline{t_\ell t_r}$ closes the funnel (polygon).
Lemma: LB for funnel of opening angle ϕ: $K_\phi := \sqrt{1 + \sin \phi}$.

- Strongly increasing: $0 \leq \phi \leq \pi/2$, Interval $[1, \sqrt{2}]$
- Strongly decreasing: $\pi/2 \leq \phi \leq \pi$, Interval $[\sqrt{2}, 1]$
- Subdivide: Strategy up to $\phi_0 = \pi/2$, Strategy from $\phi_0 = \pi/2$
Rep.: Opt. strat. for angles $\pi \geq \phi_0 \geq \pi/2$

- Backward analysis: For $\varphi_n := \pi$ optimal strategy.
- $K_\pi = 1$ and K_π-competitive opt. strategy with path l_n or r_n.
- Assumption: Opt. strategy for some ϕ_2 with factor K_{ϕ_2} ex.
- How to prolong for ϕ_1 with factor K_{ϕ_1} where $\pi/2 \leq \phi_1 < \phi_2$?
- We have $K_{\phi_1} > K_{\phi_2}$.
Opt. strat. opening angle $\pi \geq \varphi_0 \geq \pi/2!$

- Situation: Opt. strategy for ϕ_2 with ratio K_{ϕ_2}
- How to get opt. strategy for K_{ϕ_1}?
- Conditions for the path w? Design!
- Goal behing v_l, path: $|w| + K_{\phi_2} \cdot \ell_2$, optimal: l_1
- Goal behind v_r, path: $|w| + K_{\phi_2} \cdot r_2$, optimal: r_1
- Means: $\frac{|w| + K_{\phi_2} \cdot \ell_2}{l_1} \leq K_{\phi_1}$ and $\frac{|w| + K_{\phi_2} \cdot r_2}{r_1} \leq K_{\phi_1}$
Opt. strat. opening angle $\pi \geq \varphi_0 \geq \pi/2$!

- Guarantee: $|w| + K\phi_2\cdot\ell_2 \leq K\phi_1$ and $|w| + K\phi_2\cdot r_2 \leq K\phi_1$
- Combine, single condition for w
- $|w| \leq \min\{ K\phi_1\ell_1 - K\phi_2\ell_2, K\phi_1r_1 - K\phi_2r_2 \}$
- Change of a vertex at p_2? Remains guilty!
Opt. strat. opening angle $\pi \geq \varphi_0 \geq \pi/2!$

- Change left hand: Condition

 \[|w| \leq \min\{ K_{\phi_1} \ell_1 - K_{\phi_2} \ell_2, K_{\phi_1} r_1 - K_{\phi_2} r_2 \}\]

- There is opt. strategy for ϕ_2

- Show: \[|w| + K_{\phi_2} (\ell_2 + \ell'_2) \leq K_{\phi_1}\]
Opt. strat. opening angle $\pi \geq \varphi_0 \geq \pi/2$!

\[
|w| \leq K_{\phi_1} l_1 - K_{\phi_2} l_2 \\
= K_{\phi_1} l_1 - K_{\phi_2} l_2 + K_{\phi_2} l'_2 - K_{\phi_2} l'_2 \\
\leq K_{\phi_1} (l_1 + l'_2) - K_{\phi_2} (l_2 + l'_2)
\]
Opt. strat. opening angle $\pi \geq \varphi_0 \geq \pi/2!$

Lemma Let S be a strategy for funnels with opening angles $\phi_2 \geq \pi/2$ and competitive ratio K_{ϕ_2}. We can extend this strategy to a strategy with ratio K_{ϕ_1} for funnels with opening angles ϕ_1 where $\phi_2 > \phi_1 \geq \pi/2$, if we guarantee

$$|w| \leq \min\{ K_{\phi_1}l_1 - K_{\phi_2}l_2, K_{\phi_1}r_1 - K_{\phi_2}r_2 \}$$

for the path w from p_1 (opening angle ϕ_1) to p_2 (opening angle ϕ_2).
Opt. strat. opening angle $\pi \geq \varphi_0 \geq \pi/2!$

- If $|w| \leq \min\{K\phi_1\ell_1 - K\phi_2\ell_2, K\phi_1r_1 - K\phi_2r_2\}$ holds, then
- $|W| \leq \min\{K\phi_0 \cdot |P_L| - K\pi\ell_{\text{End}}, K\phi_0 \cdot |P_R| - K\pi r_{\text{End}}\}$.
Opt. strat. opening angle $\pi \geq \varphi_0 \geq \pi/2$!

- $|w| \leq \min\{ K_{\phi_1} \ell_1 - K_{\phi_2} \ell_2 , K_{\phi_1} r_1 - K_{\phi_2} r_2 \}$
- How to fulfil this?
- Equality for both sides: $K_{\phi_2} (\ell_2 - r_2) = K_{\phi_1} (\ell_1 - r_1)$
- Good choice for both sides!
- Defines a curve!
- We start with $A = K_{\phi_0} (\ell_0 - r_0)$
- Parametrisation!
\[A = K_{\phi_0} (\ell_0 - r_0) \]

- **Hyperbola:** \(\frac{X^2}{a^2} - \frac{Y^2}{b^2} = 1, \ l - r = 2a, \ 2c, \ a^2 + b^2 = c^2 \)

- **Circle:** \(X^2 + (Y - x)^2 = z^2, \ r = z, \ (0, x) \)
Intersection with circle and hyperbola

- Hyperbola: \(\frac{X^2}{\left(\frac{A}{2K\phi}\right)^2} - \frac{Y^2}{\left(\frac{1}{2}\right)^2} - \left(\frac{A}{2K\phi}\right)^2 = 1 \)

- Circle: \(X^2 + \left(Y + \frac{\cot \phi}{2}\right)^2 = \frac{1}{4\sin^2 \phi} \)
Opt. strat. for opening angle $\pi \geq \varphi_0 \geq \pi/2$!

Intersection: Verification by insertion!

$$X(\phi) = \frac{A}{2} \cdot \cot \frac{\phi}{2} \cdot \sqrt{\left(1 + \tan \frac{\phi}{2}\right)^2} - A^2$$

$$Y(\phi) = \frac{1}{2} \cdot \cot \frac{\phi}{2} \cdot \left(\frac{A^2}{1 + \sin \phi} - 1\right)$$

where $A = K\varphi_0(\ell_0 - r_0)$
Opt. strat. for opening angle \(\pi \geq \phi_0 \geq \pi/2! \)

\[
X(\phi) = \frac{A}{2} \cdot \cot \frac{\phi}{2} \cdot \sqrt{\left(1 + \tan \frac{\phi}{2}\right)^2 - A^2}
\]

\[
Y(\phi) = \frac{1}{2} \cdot \cot \frac{\phi}{2} \cdot \left(\frac{A^2}{1 + \sin \phi} - 1\right)
\]

Change of the boundary points. \(A \) also changes, new piece of curve!
Opt. strat. for opening angle $\pi \geq \varphi_0 \geq \pi/2$!

Theorem: The goal of a funnel with opening angle $\phi_0 > \pi/2$ can be found with ratio K_{ϕ_0}.

Proof: Show that the curves fulfil:

$$|w| \leq \min\{ K_{\phi_1} \ell_1 - K_{\phi_2} \ell_2, K_{\phi_1} r_1 - K_{\phi_2} r_2 \}$$

For any small piece w of the curve. Analytically, lengthy proof! Experimentally!
Opt. strat. opening angle $0 \leq \varphi_0 \leq \pi/2$!

- The same approach
- But independent from the angle
- Dominated by factor $K_{\pi/2} = \sqrt{2}$
- Require: $w \leq \min\{ \sqrt{2}(\ell_1 - \ell_2), \sqrt{2}(r_1 - r_2) \}$
- Equality: $\ell_1 - \ell_2 = r_1 - r_2$
- Current angular bisector: Hyperbola!

![Diagram of angular bisector and distances](image)
Opt. strat. opening angle $0 \leq \varphi_0 \leq \pi$!

Combine strategy 1 and strategy 2

Theorem: In an unknown street-polygon beginning from the source s we can find the target t with an optimal online strategy with competitive ratio $\sqrt{2}$.
Optimal strategy “Worst-Case-Aware”

As long as target t is not visible:
- Compute current v_ℓ and v_r.
- If only one exists: Move directly toward the other.
- Otherwise. Repeat:
 - New reflex vertex v'_ℓ or v'_r is detected:
 - Use v'_ℓ or v'_r instead of v_ℓ or v_r.
 - Let ϕ be the angle between v_ℓ, the current position and v_r.
 - If $\phi \leq \frac{\pi}{2}$: Follow the current angular bisector!
 - If $\phi > \frac{\pi}{2}$: Follow the curve $(X(\phi), Y(\phi))$.
 - Until either v_ℓ or v_r is explored.
 - Move toward the non-explored vertex.
- Move toward the goal.