Online Motion Planning MA-INF 1314 Searching Points/Rays

Elmar Langetepe University of Bonn

Rep.: Searaching for a point!

- 2-ray search: Point on a line
- Compare with shortest path, competitive?
- Reasonable strategy: Depth x_1 , depth x_2 and so on
- Traget at least step 1 away!
- Worst-Case, just behind d, one add. turn!
- Strategy, such that: $\sum_{i=0}^{k+1} 2x_i + x_k \leq Cx_k$
- Minimize: $\frac{\sum_{i=0}^{k+1} x_i}{x_k}$, Functional!

Rep.: Theorem Gal 1980

If functional F_k fulfils:

i) F_k continuous ii) F_k unimodal: $F_k(A \cdot X) = F_k(X)$ und $F_k(X + Y) \le \max\{F_k(X), F_k(Y)\},\$ iii) $\liminf_{a \mapsto \infty} F_k\left(\frac{1}{a^{k+i}}, \frac{1}{a^{k+i-1}}, \dots, \frac{1}{a}, 1\right) =$ $\liminf_{\epsilon_{k+i}, \epsilon_{k+i-1}, \dots, \epsilon_1 \mapsto 0} F_k\left(\epsilon_{k+i}, \epsilon_{k+i-1}, \dots, \epsilon_1, 1\right),\$ iv) $\liminf_{a \mapsto 0} F_k\left(1, a, a^2, \dots, a^{k+i}\right) =$ $\liminf_{\epsilon_{k+i}, \epsilon_{k+i-1}, \dots, \epsilon_1 \mapsto 0} F_k\left(1, \epsilon_1, \epsilon_2, \dots, \epsilon_{k+i}\right),\$ v) $F_{k+1}(f_1, \dots, f_{k+i+1}) \ge F_k(f_2, \dots, f_{k+i+1}).$

Then: $\sup_k F_k(X) \ge \inf_a \sup_k F_k(A_a)$ mit $A_a = a^0, a^1, a^2, \dots$ und a > 1.

Rep.: Example 2-ray search

- $F_k(f_1, f_2, ...) := \frac{\sum_{i=1}^{k+1} f_i}{f_k}$ for all k.
- Unimodal $F_k(A \cdot X) = F_k(X)$ and $F_k(X + Y) \le \max\{F_k(X), F_k(Y)\}$? • $\frac{\sum_{i=1}^{k+1} A \cdot f_i}{A \cdot f_i} = \frac{\sum_{i=1}^{k+1} f_i}{f_i}$
- $F_k(X+Y) \le \max\{F_k(X), F_k(Y)\}$?
- Follows from $\frac{a}{b} \ge \frac{c}{d} \Leftrightarrow \frac{a+c}{d+b} \le \frac{a}{b}$
- Simple equivalence!
- Optimize: $f_k(a) := \frac{\sum_{i=1}^{k+1} a^i}{a^k}$
- Minimized by a = 2

Rep.: Search on m-rays

- Lemma For the m-ray search problem there is always an optimal competitive strategy (f₁, f₂,...) that visits the rays in a periodic order and with overall increasing depth.
- periodic and monotone: (f_j, J_j) , $J_j = j + m$, $f_j \ge f_{j-1}$
- Proof: First index with: $f_j > f_{j+1}$, $J_j > J_{j+1}$, Exchange values and the order on the rays, successively!
- (f_j, J_j) , $J_j = j + m$, $f_j \ge f_{j-1}$ Theorem of Gal can be applied!

• Reasonable strategy, ratio: $\frac{\sum_{i=1}^{k+1} 2x_i + x_k}{x_k} = 1 + 2 \frac{\sum_{i=1}^{k+1} x_i}{x_k}$

- Reasonable strategy, ratio: $\frac{\sum_{i=1}^{l} 2x_i + x_k}{x_k} = 1 + 2\frac{\sum_{i=1}^{l} x_i}{x_k}$ • Ass.: C optimal, $\frac{\sum_{i=1}^{k+1} x_i}{x_k} \leq \frac{(C-1)}{2}$
- There is strategy $(x'_1, x'_2, x'_3...)$ s. th. $\frac{\sum_{i=1}^{k+1} x'_i}{x'_k} = \frac{(C-1)}{2}$ for all k
- Monotonically increasing in x'_j $(j \neq k)$, decreasing in x'_k
- First k with: $\frac{\sum_{i=1}^{k+1} x_i}{x_k} < \frac{(C-1)}{2}$, decrease x_k
- $\frac{\sum_{i=1}^{k} x_i}{x_{k-1}} < \frac{(C-1)}{2}!$, x_{k-1} decrease etc., monotonically decreasing sequence, bounded, converges! Non-constructive!

Other approach: Optimality for equations!

- Set: $\frac{\sum_{i=1}^{k+1} x'_i}{x'_k} = \frac{(C-1)}{2}$ for all k
- $\sum_{i=1}^{k+1} x'_i \sum_{i=1}^k x'_i = \frac{(C-1)}{2} \left(x'_k x'_{k-1} \right)$
- Thus: $C'(x'_k x'_{k-1}) = x'_{k+1}$, Recurrence!
- Solve a recurrence! Analytically! Blackboard!
- Characteristical polynom: No solution C' < 4
- $x'_i = (i+1)2^i$ with C' = 4 is a solution! Blackboard! Optimal!

2-ray search, restricted distance

- Assume goal is no more than dist. $\leq D$ away
- Exactly D! Simple ratio 3!
- Find optimal startegy, minimize C!
- Vice-versa: *C* is given! Find the largest distance *D* (reach *R*) that still allows *C* competitive search. ■
- One side with $f_{Ende} = R$, the other side arbitrarily large!

2-ray search, maximal reach \boldsymbol{R}

- C given, optimal reach R!
- **Theorem** The strategy with equality in any step maximizes the reach *R* !
- Strategy: $\frac{\sum_{i=1}^{k+1} x_i}{x_k} = \frac{(C-1)}{2}$, first step: $x_1 = \frac{(C-1)}{2}$
- Recurrence: $x_0 = 1$, $x_{-1} = 0$, $x_{k+1} = \frac{(C-1)}{2}(x_k x_{k-1})$
- Strategy is optimal! By means of the Comp. Geom. lecture!

2-ray search, maximal reach \boldsymbol{R}

- f(C) := maximal reach depending on C
- Bends are more steps!

2-ray search, given distance \boldsymbol{R}

- f(C) := maximal reach depending on C
- Rotate, R given, binary search!

Searching for the origin of ray

- Unknown ray r in the plane, ${\bf L}$ nknown origin $s{\bf I}$
- Startpoint a
- Searchpath Π , hits r, detects s, move to s
- Shortest path OPT, build the ratio
- Π has *competitive ratio* C if inequality holds for all rays
- Task: Find searchpath Π with the minimal $C{\scriptscriptstyle I}{\scriptscriptstyle I}$

The Window-Shopper-Problem

- Unknown ray starts at s on known vertical line l(window)
- Ray starts perpendicular to l
- aq runs parallel to r [
- *Motivation:* Move along a window until you *detect* an item
- Move to the item

Some observations

- \bullet Any reasonable strategy is monotone in x and $y{\scriptscriptstyle I}$
- Otherwise: Optimize for some s on l
- Finally hits the *window*
- Ratio is close to 1 in the beginning, but bigger than 1
- Ratio goes to 1 at the end

Strategy design: Three parts

- A line segment from (0,0) to (a, b) with increasing ratio for s between (1,0) and (1,b)
- A curve f from (a, b) to some point (1, D) on l which has the same ratio for s between (1, b) and (1, D)
- A ray along the *window* starting at (1, D) with decreasing ratio for s beyond (1, D) to infinity.
- \bullet Worst-case ratio is attained for all s between (1,b) and (1,D)

