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INSTITUT FÜR INFORMATIK I

Elmar Langetepe

Online Motion Planning

MA INF 1314

Summersemester 2016

Manuscript: Elmar Langetepe
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1.4.2 Competitive ratio of SmartDFS

The corridor of width 3, see Figure 1.7, indicates that the competitive ratio of SmartDFS should be better

than 2. SmartDFS runs 4 times though the corridor whereas the shortest path visits any cell only once.

This gives roughly a ratio of 4
3 . We will show that this is the worst-case for SmartDFS. The gap between

e 7
6 and 4

3 is small.

For the analysis we first give a precise definition of the structure of parts of gridpolygons which

will be explored in an optimal fashion. The SmartDFS Strategy does not make any detours within these

passages.

For a corridor of widths 1 this is abviously true. But also corridors of width 2 will be passed

optimally, since SmartDFS runs forth and back along different tracks; see Figure 1.17. We give a formal

definition of the narrow passages.

Definition 1.14 The set of cells that can be deleted such that the layernumber of the remaining cells do

not change are called narrow passages of P.

P2
P1

Figure 1.17: SmartDFS is optimal in narrow passages.

SmartDFS passes narrow passages optimally since they allow an optimal forth and back pass-through.

There are no additional detours at the entrance and exit of a narrow passage because they consist of cells

in the first layer. They can be considered as gates. The entrance and exit is always precisely determined.

The idea is to consider polygons without narrow passages first. There is a fixed relationship between

edges and cells.

Lemma 1.15 Let P be a simple gridpolygon without narrow passages and without a split-cell in the

first layer. We have

E(P)≤
2

3
C(P)+6 .

Proof. A 3×3 gridpolygon has precisely this property, C(P) = 9 und E(P) = 12. Any gridpolygon with

the above conditions can be reduced by successively removing columns or rows such that in each step

the property remains true and such that always at least 3 cells and at most 2 edges will be removed. This

is an exercise below.

Starting backwards from the property E(P0 = 2
3C(P0) + 6 we will maintain the bound E(Pi) ≤

2
3C(Pi)+ 6 since we add at least 3 cells and add at most 2 edges. Finally, E(P) ≤ 2

3C(P)+ 6 holds.

!

First, we show that the overall number of exploration steps of SmartDFS decreases for the given class

of polygons.

Lemma 1.16 A simple gridpolygon P with E(P) edges and C(P) cells, without narrow passages and

without a split-cell in the first layer well be explored by SmartDFS with no more than S(P) ≤ C(P)+
1
2E(P)−5 steps.
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Figure 1.18: A simple gridpolygon without narrow passages and no split-cell in the first layer has the property
E(P)≤ 2

3 C(P)+ 6. After the first coil SmartDFS starts in the 1-Offset P′. The return path to c′ from an arbitrary

point in P′ is shorter than 1
2 E(P)/2− 2.

Proof. From Theorem 1.13 we conclud S(P) ≤ C(P)+ 1
2E(P)− 3. By the properties of P, SmartDFS

performs a full first round from s to the first cell s′ in the second layer. After that, in principle we start

SmartDFS again at s′ in a gridpolygon (1-Offset P′ of P); see P′ in Figure 1.18. P′ is path connected and

by Lemma 1.9 P′ has 8 edges less than P;

The cells in the first layer have been visited optimally the path length from s to s′coincidence with the

number of cells in the first layer. Finally, we have to count two additional steps from s′ to s. Altogether,

we require S(P)≤C(P)+ 1
2 (E(P)−8)−3+2 =C(P)+ 1

2E(P)−5 steps. !

With the statements above we will be able to prove the main result.

Mit diesen Vorbereitungen können wir die kompetitive Schranke beweisen.

Theorem 1.17 (Icking, Kamphans, Klein, Langetepe, 2005) The SmartDFS strategie for the exploration

of simple gridpolygons is 4
3 -competitive! [IKKL05]

Proof.

Let P be a simple gridpolygon. First, we remove the narrow passages from P. We know that the

entrance and exits over the gates by SmartDFS are optimal. We obtain a sequence Pi, i = 1, . . . ,k of

gridpolygons connected by narrow passages. See for example P1 and P2 in Figure 1.17.

We can consider the gridpolygons Pi separately. We can also assume different starting points. The

movement between the gates count for the required additional steps. It is sufficient to show S(Pi) ≤
4
3C(Pi)− 2 for any subpolygon. This bound exactly holds for 3×m gridpolygons for even m; see Fig-

ure 1.19.

We show the bound by induction over the number of splil-cells.

s

optimal strategySmartDFS

s

Figure 1.19: In a corridor of width 3 and with even lenght the bound S(P) = 4
3 SOpt(P)− 2 holds.

Induktion-Base: If Pi has no split-cell, there is also no split-cell in the first layer. We apply Lem-

ma 1.16 and Lemma 1.15 and obtain:

S(Pi) ≤ C(Pi)+
1

2
E(Pi)−5
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≤ C(Pi)+
1

2

(
2

3
C(Pi)+6

)

−5

=
4

3
C(Pi)−2 .

Induktion-Step: If there is no split-cell in the first layer we can apply the same arguments as above.

Therefore, we assume that the first split occurs in the first layer. Two cases can occur as depicted in

Figure 1.20.

In the first case the component of type (II) was not visited before and we define Q := {c}. The second

case occurs, if the split-cell c is diagonally adjacent to a cell c′; compare Figure 1.20(ii), (iii) and (iv).

We build the smallest rectangle Q that contains c and c′. In case (ii) and (iii) Q is a square of size 4. In

case (iv) by simple adjacency Q is a rectangle and |Q|= 2.

Analogously to the proof of Theorem 1.13 we split the polygons into parts P′ and P′′ both containing

Q.

Here P′′ is of type (I) or (II) and P′ the remaining polygon. das Polygon der Komponenten vom Typ

(I) oder (II) und P′ das andere.

For |Q|= 1 (see Figure 1.20(i)) we have S(Pi) = S(P′)+S(P′′) and C(Pi) =C(P′)+C(P′′)−1. We

apply the induction hypothesis on P′ and P′′ (they have one split-cell less) and obtain:

S(Pi) = S(P′)+S(P′′)

≤
4

3
C(P′)−2+

4

3
C(P′′)−2

≤
4

3
C(Pi)+

4

3
−4 <

4

3
C(Pi)−2 .

For |Q| = 4 we argue that by the union we will save some steps that will occur for the separate

explorations. We consider P′ and P′′ separately, first. The movements from c′ to c (and c to c′) count in

both polygons. For the complete Pi the path from c′ to c (and c to c′) are given either P′ or in P′′, this

means that we save 4 = |Q| steps.

We have S(Pi) = S(P′)+ S(P′′)− 4 and C(Pi) = C(P′)+C(P′′)− 4. By induction hypothesis for P′

and P′′ we conclude:

S(Pi) = S(P′)+S(P′′)−4

≤
4

3
C(P′)+

4

3
C(P′′)−8

=
4

3
(C(P′)+ C(P′′)−4)−

8

3

<
4

3
C(Pi)−2 .

The case |Q|= 2 is left as an exercise.

Altogether an optimal strategy requires ≥C(Pi) steps or ≥C(P) in total and we have a competitive

ratio of 4
3 . !

Exercise 8 Analyse the remaining case |Q|= 2 in the above proof.

If we compare the result to Theorem 1.7 there is a gap of size 1
6 between 7

6 and 4
3 . Recently, both

parts have been improved. There is a lower bound of 20
17 and an upper bound of 5

4 shown by Kolenderska

et. al 2010. In principle the strategy is a local improvement of SmartDFS and the lower bound is an

extension of our construction. The result comes along with a tedious case analysis.


