Elmar Langetepe

Online Motion Planning

MA INF 1314
1.4 Exploration of grid environments

Next we consider a simple discrete grid model. The agent runs inside a grid-environment. In contrast to Shannons the inner obstacles consist of full cells instead of single blocked edges.

We would like to design efficient strategies for such grid environments. First, we give a formal definition.

Definition 1.6

- A **cell** c is a tuple $(x,y) \in \mathbb{N}^2$.
- Two cells $c_1 = (x_1,y_1), c_2 = (x_2,y_2)$ are **adjacent**, if $|x_1 - x_2| + |y_1 - y_2| = 1$. For a single cell c, exact 4 cells are adjacent.
- Two cells $c_1 = (x_1,y_1), c_2 = (x_2,y_2), c_1 \neq c_2$ are **diagonally adjacent**, if $|x_1 - x_2| \leq 1 \land |y_1 - y_2| \leq 1$. For a single cell c, exact 8 cells are diagonally adjacent.
- A **path** $\pi(s,t)$ from cell s to cell t is a sequence of cells $s = c_1, \ldots, c_n = t$ such that c_i and c_{i+1} are adjacent for $i = 1, \ldots, n - 1$.
- A **gridpolygon** P is a set of path-connected cells, i.e., $\forall c_i, c_j \in P : \exists$ path $\pi(c_i,c_j)$, such that $\pi(c_i,c_j) \in P$ verlauf.

The agent is equipped with a touch sensor so that the agent scans the adjacent cells and their nature (free cell or boundary cell) from its current position. Additionally, the agent has the capability of building a map. The task is to visit all cells of the gridpolygon and return to the start. This problem is NP-hard for known environments; see [IPS82]. We are looking for an efficient Online-Strategy. The agent can move within one step to an adjacent cell. For simplicity we count the number of movements.

The task is related to vacuum-cleaning or lawn-mowing. A cell represents the size of the tool, the tool should visit all cells of the environment. A general polygonal environment P can be approximated by a grid-polygon.

![Figure 1.6: A polygon P and the gridpolygon P_{\square} as a reasonable approximation.](image)

The starting position and orientation of the tool fixes the grid and all connected cells which are entirely inside P belong to the approximation P_{\square}; see Figure 1.6. For any gridpolygon P' we use the following notation. Cells that do not belong to P' but are diagonally adjacent to a cell in P' are called **boundary cells**. The common edges of the boundary cells and cells of P' are the **boundary edges**. Let $E(P')$ denote the number of boundary cells or E for short, if the context is clear. The number of cells is denoted by $C(P')$ or C respectively.

From Theorem 1.3 we can already conclude a lower bound of 2 for the competitive ratio of this problem. On the other hand DFS on the cells finishes the task in $2C - 2$ steps.
1.4 Exploration of grid environments

Exercise 4 Give a formal proof that for a gridpolygon P the DFS strategy on the cells requires exactly $2C - 2$ steps for the exploration (with return to the start) of P.

But is DFS really the best strategy in general? For fleshy environments DFS obviously is not very efficient. Besides the lower bound construction makes use of corridors only. Compare Figure 1.7: After DFS has visited the right neighbour of s the environment is fully known and we can improve the strategy. It seems that even the optimal solution could be found in an online fashion in this example. On the other hand there are always skinny corridor-like environments where DFS is the best online strategy. Altogether, we require a case sensitive measure for the performance of an online strategy that relies on the existence of large areas. The existence of large fleshy areas depends on the relationship between the number of cells C and the number of (boundary) edges E. In Figure 1.7 the environment has 18 edges and 18 cells. In corridor-like environments we have $\frac{1}{2}E \approx C$ in fleshy environments we have $\frac{1}{2}E \ll C$; see also Figure 1.8.

![Figure 1.7: Ist DFS optimal?](image)

![Figure 1.8: The number of boundary edges E in comparison to the number of cells C is a measure for the existence of fleshy or skinny parts.](image)

1.4.1 Exploration of simple gridpolygons

We first consider simple gridpolygons P which do not have any inner boundary cell, i.e., also the set of all cells that do not belong to P are path connected.

Note that the lower bound of 2 is not given, because the lower bound construction in the previous section requires the existence of inner obstacles. We make use of a different construction.

Theorem 1.7 Any online strategy for the exploration (with return to the start) of a simple gridpolygon P of C cells, requires at least $\frac{3}{2}C$ steps for fulfilling the task.

Proof. We let the agent start in a corner as depicted in Figure 1.9(i) and successively extend the walls. Assume that the agent decides to move to the east first. By symmetry we apply the same arguments, if the agent moves to the south. For the second step the agent has two possibilities (moving backwards can be ignored). Either the strategy leaves the wall by a step to the south (see Figure 1.9(ii)) or the strategy follows the wall to the east (see Figure 1.9(iii)).

In the first case we close the polygon as shown in Figure 1.9(iv). For this small example the agent requires 8 steps whereas the optimal solution requires only 6 steps which gives a ratio of $\frac{8}{6} \approx 1.3$.

![Figure 1.9: Simple gridpolygons](image)
In the second case we proceed as follows: If the robot leaves the wall (the wall runs upwards), we close the polygon as depicted in Figure 1.9(v) or (vi), respectively. In this small example the agent requires 12, respectively, whereas 10 steps are sufficient.

In the last and most interesting case the agent follows the wall upwards and we present the sophisticated polygon of Figure 1.9(vii). In the offline case an agent requires 24 steps. The online agent already made a mistake and can only finish the task within 24 steps. This can be shown by a tedious case distinction of all further movements. We made use of an implementation that simply checks all possibilities for the next 24 steps. There was no such path that finishes the task. For all cases we guarantee have a worst-case ratio of \(\frac{28}{24} = \frac{7}{6} \approx 1.16 \).

We use this scheme in order to present a lower bound construction of arbitrary size. Any block has an entrance and exit cell which are marked by corresponding arrows; see Figure 1.9(iv)–(vii). If an agent moves inside the next block, the game starts again. Since the arrows only point in east or west direction we take care that the concatenated construction results in a simple gridpolygon of arbitrary size.

Note that the arbitrary-size condition in the above proof is necessary. Assume that we can only construct such examples of fixed size \(D \). This will not result in a lower bound on the competitive ratio. Any reasonable algorithm will explore the fixed environment with competitive ratio 1 since \(\alpha \gg D \) exists, with \(|S_{\text{ALG}}| \leq |S_{\text{OPT}}| + \alpha \).

We consider the exploration of a simple gridpolygon by DFS and formalize the strategy; see Algorithmus 1.2. The agent explores the polygon by the “Left-Hand-Rule”, i.e. the DFS preference is Left before Straight-On before Right. The current direction (North, West, East or South) is stored in the variable \(\text{dir} \). The functions \(\text{cw}(\text{dir}) \), \(\text{ccw}(\text{dir}) \) und \(\text{reverse}(\text{dir}) \) result in the corresponding directions of a rotation by 90° in clockwise or counter-clockwise order or by a rotation of 180°, respectively. The predicate \(\text{unexplored}(\text{dir}) \) is true, if the adjacent cell in direction \(\text{dir} \) is a cell of the environment, which was not visited yet.
1.4 Exploration of grid environments

Algorithm 1.2 DFS

DFS:
Choose dir, such that reverse(dir) is a boundary cell;
ExploreCell(dir);

ExploreCell(dir):
// Left-Hand-Rule:
ExploreStep(ccw(dir));
ExploreStep(dir);
ExploreStep(cw(dir));

ExploreStep(dir):
if unexplored(dir) then
move(dir);
ExploreCell(dir);
move(reverse(dir));
end if

\[\text{Algorithm 1.2 DFS}\]

Figure 1.10: First simple improvement of DFS.

A first simple improvement for DFS is as follows:

If there are no unexplored adjacent cells around the current cell, move back along the shortest path (use all already explored cells) to the last cell, that still has an unexplored neighbouring cell.

Figure 1.10 sketches this idea: After visiting \(c_1 \) the pure DFS will backtrack along the full corridor of width 2 and reach cell \(c_2 \) where still something has to be explored. With our improvement we move directly from \(c_1 \) to \(c_2 \). Note that for the shortest path we can only make use of the already visited cells. We have no further information about the environment.

By this argument we no longer use the step “move(reverse(dir))” in the procedure ExploreStep. After the execution of ExploreCell we can no longer conclude that the agent is on the same cell as before. Therefore we store the current position of the agent and use it as a parameter for any call of ExploreStep. The function unexplored(base, dir) gives “True”, if w.r.t. cell base there is an unexplored adjacent cell in direction dir. We re-formalize the behaviour as follows:
Algorithm 1.3 DFS with optimal return trips

DFS:

Choose \(\text{dir} \), such that reverse(\(\text{dir} \)) is a boundary cell;

ExploreCell(\(\text{dir} \));

Move along the shortest path to the start;

ExploreCell(\(\text{dir} \)):

\(\text{base} := \) current position;

// Left-Hand-Rule:

ExploreStep(\(\text{base}, \text{ccw}(\text{dir}) \));

ExploreStep(\(\text{base}, \text{dir} \));

ExploreStep(\(\text{base}, \text{cw}(\text{dir}) \));

ExploreStep(\(\text{base}, \text{dir} \)):

\[\text{if unexplored}(\text{base}, \text{dir}) \text{ then} \]

Move along the shortest path among all visited cells to \(\text{base} \);

move(\(\text{dir} \));

ExploreCell(\(\text{dir} \));

\[\text{end if} \]

![Figure 1.11: Second improvement of DFS.](image-url)
Algorithm 1.4 SmartDFS

SmartDFS:

Choose direction dir, such that reverse(dir) is a boundary cell;
ExploreCell(dir);
Move along the shortest path to the start;

ExploreCell(dir):

Mark the cell with its layernumber;
$base :=$ current Position;
if not SplitCell($base$) then
 // Left-Hand-Rule:
 ExploreStep($base$, ccw(dir));
 ExploreStep($base$, dir);
 ExploreStep($base$, cw(dir));
else
 // Choose different order:
 Calculate the type of the components by the layernumbers
 of the surrounding cells;
 if No component of typ (III) exists then
 Move one step by the Right-Hand-Rule;
 else
 Visit the component of type (III) last.
 end if
end if

ExploreStep($base$, dir):

if unexplored($base$, dir) then
 Move along the shortest path along
 the visited cells to $base$;
 move(dir);
 ExploreCell(dir);
end if
For a second kind of improvement we consider the gridpolygon Figure 1.11. In this example the current DFS variant fully surrounds the polygon. Finally the agent has to move back from \(c_2\) to \(c_1\) so that the corridor of width 2 is visited almost 4 times. Obviously it would be better to first fully explore the component at \(c_1\) move to the other component at \(c_2\) and finally move back to the start. In this case the critical corridor will be visited only once. So, if the exploration splits the polygon into components that have to be considered, we have to take care which component should be visited first.

A cell (like the cell \(c_1\)) where the remaining polygon definitely splits into different parts is called a split-cell. At the first visit of split-cell \(c_1\) in Figure 1.11 it seems to be better to not apply the Left-Hand preference. This depends on the location of the starting point, because we have to move back at the end. The idea can be formulated as follows.

If the unexplored part of the polygon definitely is splitted into different components (i.e., the graph of unexplored cells is splitted into different components), try to visit the unexplored part that does not contain the starting point.

This idea leads to the Algorithmus 1.4 (SmartDFS). It remains to decide, which component actually contains the starting point. For this we introduce some notions. Until the first split happens we apply the Left-Hand-Rule and successively explore the polygon layer by layer from the outer boundary to the inner parts. We require a formal definition of the layers.

![Figure 1.12: The \(\ell\)-Offset of gridpolygon \(P\).](image)

Figure 1.12: The \(\ell\)-Offset of gridpolygon \(P\).

Definition 1.8 Let \(P\) be a (simple) gridpolygon. The cells of \(P\) that share a boundary edge belong to the first layer, the **1-Layer** of \(P\). The gridpolygon that stems from \(P\) without the 1-Layer is called the **1-Offset** of \(P\). Recursively, the **2-Layer** of \(P\), is the **1-Layer** of the **1-Offset** of \(P\) and the **2-Offset** of \(P\) is the **1-Offset** of the **1-Offset** of \(P\) and so on.

Note that the \(\ell\)-Offset of a gridpolygon need not be connected and finally the Offsets will decrease to an empty polygon. The definition is totally independent from any strategy. Fortunately, during the execution of SmartDFS on a simple gridpolygon, we can successively mark and store the layers for any visited cell. The \(\ell\)-Offset has an interesting property.

Lemma 1.9 The non-empty \(\ell\)-Offset of a simple gridpolygon \(P\) has at least \(8\ell\) edges less than \(P\).
1.4 Exploration of grid environments

Proof. We surround the boundary of the gridpolygon in clockwise order and visit all boundary edges along this path. Let us assume that the offset remains a single component. For a left turn the \(\ell \)-Offset \(2\ell \) looses \(2\ell \) edges for a right turn the \(\ell \)-Offset \(2\ell \) wins \(2\ell \) edges. We can show that there are 4 more right turns than left turns. So the \(\ell \)-Offset has at least \(8\ell \) edges less than \(P \). Even more edges will be cancelled, if the polygon fell into pieces.

Exercise 5 Show that for any surrounding of the boundary of a simple gridpolygon in clockwise order there are 4 more right turns than left turns. Make use of induction.

Exercise 6 Show that in the above proof the non-empty \(\ell \)-Offset will lose even more edges, if it consists of more than one connected component. Show the statement for the 1-Offset.

\[A \cup B \] denotes the disjoint union \(A \cup B = A \cup B \) mit \(A \cap B = \emptyset \).

Figure 1.13: Decomposition at a split-cell.

Figure 1.14: Three types of components.
\[P = K_1 \cup K_2 \cup \{ \text{visited cells of } P \}, \]

where \(K_1 \) denotes the component that was visited last. SmartDFS recursively works on \(K_2 \), returns to \(c \) and proceeds with \(K_1 \).

By the layer-numbers we would like to avoid the situation of Figure 1.11. We will find the split-cell in layer \(\ell \), which gives three types of components; see Figure 1.14:

(I) Component \(K_i \) is fully surrounded by layer \(\ell \).

(II) Component \(K_i \) is not surrounded by layer \(\ell \) (may be touched by the split-cell only).

(III) Component \(K_i \) is partly surrounded by layer \(\ell \) (not only touched by the split cell).

Obviously, if a split-cell occurs, we should visit the component of type (III) last because the starting point lies in the outer layers of this component.

![Special Cases](image1.png)

Figure 1.15: Special cases: No component of typ (III) exists.

There are some situations where a component of type (III) does not exist. For example if the split-cell is the first cell on the next layer, or the component of the starting point was just explored (efficiently). More precisely:

(a) The component with the starting point on its layer was just fully explored in the current layer; see Figure 1.15(i). In this case the order of visiting the remaining components is not critical, we can choose an arbitrary order. This example also shows that at a split-cell more than two components has to be visited. We simply apply one the next step by changing to the Right-Hand-Rule.

(b) Two components have been fully surrounded, because at the split-cell we change from layer \(\ell \) to \(\ell + 1 \); see Figure 1.15(ii). In all other cases at least one additional visited cell is marked with layer number of the split-cell. We can conclude that layer \(\ell \) was closed with the split-cell. This means that the starting point is not part of the layer of the component where the agent currently comes from. Because the agent normally moves by the Left-Hand-Rule, it suffices to apply the Right-Hand-Rule in this case also.

Altogether in both cases we simply apply the Right-Hand-Rule for a single step.

For the overall analysis at a split-cell we consider two polygons \(P_1 \) und \(P_2 \) as depicted in Figure 1.13(i). Here we detect the component of type (III). \(K_2 \) is a component of type (II). Let \(Q \) be a
rectangle of edge length (width or height) $2q + 1$ around the split cell \(c \) so that

\[
q := \begin{cases}
\ell, & \text{if } K_2 \text{ has type (I)} \\
\ell - 1, & \text{if } K_2 \text{ has type (II)}.
\end{cases}
\]

Now choose \(P_2 \) so that \(K_2 \cup \{ c \} \) is the \(q \)-Offset of \(K_2 \cup \{ c \} \). The idea is that the rectangle \(Q \) will be added so that \(P_2 \) has the desired form. Now let \(P_1 := ((P_2) \cup Q) \cap P \), comp. Figure 1.13. The intersection with \(P \) is necessary, since there are cases where \(Q \) does not totally fit into \(P \). We would like to apply arguments recursively for \(P_2 \) and \(P_1 \). Let us consider them separately as shown in Figure 1.13(ii). We have choosen \(P_1, P_2 \) and \(Q \) in a way so that the paths in \(P_1 \setminus Q \) and \(P_2 \setminus Q \) did not change w.r.t. the paths already performed for \(P \).\(^1\) The already performed paths that lead in \(P \) from \(P_1 \) to \(P_2 \) and from \(P_2 \) to \(P_1 \) will be used and adapted so that the paths outside \(Q \) will not change; see Figure 1.13. We can consider \(P_1 \) and \(P_2 \) separately.

We know that any cell has to be visited at least once. Therefore we count the number of steps \(S(P) \) for polygons \(P \) as follows. It is the sum of the cells, \(C(P) \), of \(P \) plus the extra cost \(excess(P) \) for the overall path length.

\[
S(P) := C(P) + excess(P).
\]

The following Lemma gives an estimate for the extra cost w.r.t. the above decomposition around a split-cell.

Lemma 1.10 Let \(P \) be a gridpolygon, \(c \) a split-cell, so that two remaining components \(K_1 \) and \(K_2 \) has to be considered. Assume that \(K_2 \) is visited first. We conclude:

\[
\text{excess}(P) \leq \text{excess}(P_1) + \text{excess}(K_2 \cup \{ c \}) + 1.
\]

Proof. The agent is located at cell \(c \) and decides to explore \(K_2 \cup \{ c \} \) starting from \(c \) and return to \(c \). This gives additional cost at most \(excess(K_2 \cup \{ c \}) \), note that the part \(P_2 \setminus (K_2 \cup \{ c \}) \) can only help for the return path. Because \(c \) was already visited, we count one additional item for the excess of visited cells. After that we proceed with the exploration of \(P_1 \) and require \(excess(P_1) \) for this part. \(\square \)

For the full analysis of SmartDFS we have to prove some structural properties:

Lemma 1.11 The shortest path between to cells \(s \) and \(t \) in a simple gridpolygon \(P \) with \(E(P) \) boundary edges consists of at most \(\frac{1}{4} E(P) - 2 \) cells.

Proof. W.l.o.g. we assume that \(s \) and \(t \) are in the first layer, otherwise we can choose different \(s \) or \(t \) whose shortest path is even a bit longer. Consider the path, \(\pi_L \), in clockwise order in the first layer from \(s \) to \(t \) and the path, \(\pi_R \), in counter-clockwise order in the first layer from \(s \) to \(t \). Connecting \(\pi_L \) and \(\pi_R \) gives a full roundtrip. As in the proof of Lemma 1.9 counting the edges gives 4 more edges than cells which gives

\[
|\pi_R| + |\pi_L| \leq E(P) - 4
\]

visited cells.

In the worst case both path have the same length, which gives \(|\pi(s,t)| = |\pi_R| = |\pi_L| \), and \(2|\pi(s,t)| \leq E(P) - 4 \Rightarrow |\pi(s,t)| \leq \frac{1}{4} E(P) - 2. \)

\(\square \)

Lemma 1.12 Let \(P \) be a gridpolygon and let \(c \) be a split-cell. Define \(P_1, P_2 \) und \(Q \) as above. For the number of edges we have:

\[
E(P_1) + E(P_2) = E(P) + E(Q).
\]

\(^1\)For the uniqueness of this decomposition into \(P_1 \) and \(P_2 \) we remark that \(P_1 \) and \(P_2 \) are connected, respectively and \(P \cup Q = P_1 \cup P_2 \) and \(P_1 \cap P_2 \subseteq Q \) holds.
Proof. For arbitrary gridpolygons P_1 and P_2 we conclude

$$E(P_1) + E(P_2) = E(P_1 \cup P_2) + E(P_1 \cap P_2).$$

Let $Q' := P_1 \cap P_2$, we have:

$$E(P_1) + E(P_2) = E(P_1 \cap P_2) + E(P_1 \cup P_2) = E(Q') + E(P \cup Q) = E(Q') + E(P) + E(Q) - E(P \cap Q) = E(P) + E(Q),$$

since $Q' = P \cap Q$.

Exercise 7 Show that for arbitrary two gridpolygons P_1 and P_2 we have $E(P_1) + E(P_2) = E(P_1 \cup P_2) + E(P_1 \cap P_2)$.

Using all these arguments we can show:

Theorem 1.13 (Icking, Kamphans, Klein, Langetepe, 2000)

For a simple gridpolygon P with C cells and E boundary edges the strategy SmartDFS required no more than

$$C + \frac{1}{2} E - 3$$

for the exploration of P (with return to the start). This bound will be attained exactly in some environments. [IKKL00b]

Proof. By the above arguments it suffices to show $\text{excess}(P) \leq \frac{1}{2} E - 3$. We give a proof by induction on the number of components.

Induction base:

Assume that there is no split-cell. For the exploration of a single component, SmartDFS visits all cells exactly once and return to the start. For visiting all cells we require $C - 1$ steps. Now the excess is the shortest path back. By Lemma 1.11 $\frac{1}{2} E - 2$ steps suffices which gives the conclusion

Induction step:

Consider the (first) decomposition at a split-cell c. Let K_1, K_2, P_1, P_2, Q be defined as above, assume that K_2 is visited last. We have:

$$\text{excess}(P) \leq \text{excess}(P_1) + \text{excess}(K_2 \cup \{c\}) + 1 \quad (\text{Lemma 1.10})$$

$$\leq_{\text{(A)}} \frac{1}{2} E(P_1) - 3 + \frac{1}{2} E(K_2 \cup \{c\}) - 3 + 1$$

$$\leq \frac{1}{2} E(P_2) - 8q \quad \text{(Lemma 1.9)}$$

$$\leq \frac{1}{2} \left[E(P_1) + E(P_2) \right] - 4q - 5$$

$$\leq E(P) + 4(2q + 1) \quad (1.12, \text{Def. of } Q)$$

$$\leq \frac{1}{2} E(P) - 3$$

A Java-Applet for the Simulation of SmartDFS and different strategies can be found at:

http://www.geometrylab.de/
Finally, we would like to show, how to compute the offline shortest paths in gridpolygons. Of course the Dijkstra algorithm can also be applied on the gridgraph, but this algorithm does not use the grid structure directly. As an alternative we apply Algorithmus 1.5 (C. Y. Lee, 1961, [Lee61]), the running time is only linear in the number of overall cells. The algorithm simulates a wave propagation starting from the goal. Any cell will be marked with a label indicating the distance to the goal. Obstacles slow down the propagation a bit; see Figure 1.16. When the wave reaches the starting point s, we are done with the first phase. For computing the path we start at s and move along cells with strictly decreasing labels. Obviously, the shortest path need not be unique.

Algorithm 1.5 Algorithm of Lee

Shortest path from s to t in a gridpolygon

- **Datastructure**: Queue Q
- **Initialise**:
 - Q.InsertItem(t);
 - Mark t with label 0;
- **Wave propagation**:
 - **loop**
 - $c := Q$.RemoveItem();
 - **for all** Cell x such that x is adjacent to c and x is not marked **do**
 - Mark x with the label of (c) + 1;
 - Q.InsertItem(x);
 - **if** $x = s$ **then** break loop;
 - **end for**
 - **end loop**
- **Backtrace**:
 - Move along cells with strongly decreasing labels from s to t.

![Figure 1.16: Wave-Propagation.](image-url)
BIBLIOGRAPHY

Bibliography

Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>disjoint union</td>
<td>15</td>
</tr>
<tr>
<td>Layer</td>
<td>14</td>
</tr>
<tr>
<td>Lee</td>
<td>19</td>
</tr>
<tr>
<td>Left-Hand-Rule</td>
<td>10–13</td>
</tr>
<tr>
<td>Lower Bound</td>
<td>9</td>
</tr>
<tr>
<td>lower bound</td>
<td>5</td>
</tr>
<tr>
<td>adjacent</td>
<td>8</td>
</tr>
<tr>
<td>Backtrace</td>
<td>19</td>
</tr>
<tr>
<td>cell</td>
<td>8</td>
</tr>
<tr>
<td>DFS</td>
<td>8, 11</td>
</tr>
<tr>
<td>diagonally adjacent</td>
<td>8</td>
</tr>
<tr>
<td>Dijkstra</td>
<td>19</td>
</tr>
<tr>
<td>disjoint union</td>
<td>15</td>
</tr>
<tr>
<td>grid-environment</td>
<td>8</td>
</tr>
<tr>
<td>gridpolygon</td>
<td>8</td>
</tr>
<tr>
<td>Icking</td>
<td>5, 18</td>
</tr>
<tr>
<td>Itai</td>
<td>8</td>
</tr>
<tr>
<td>Java-Applet</td>
<td>18</td>
</tr>
<tr>
<td>Kamphans</td>
<td>5, 18</td>
</tr>
<tr>
<td>Klein</td>
<td>5, 18</td>
</tr>
<tr>
<td>Langetepe</td>
<td>5, 18</td>
</tr>
<tr>
<td>Lee</td>
<td>19</td>
</tr>
<tr>
<td>SmartDFS</td>
<td>13, 14</td>
</tr>
<tr>
<td>splitter</td>
<td>14</td>
</tr>
<tr>
<td>Shannon</td>
<td>3</td>
</tr>
<tr>
<td>Sleator</td>
<td>5</td>
</tr>
<tr>
<td>Sutherland</td>
<td>3</td>
</tr>
<tr>
<td>Szwarcfiter</td>
<td>8</td>
</tr>
<tr>
<td>Tarjan</td>
<td>5</td>
</tr>
<tr>
<td>touch sensor</td>
<td>8</td>
</tr>
<tr>
<td>Wave propagation</td>
<td>19</td>
</tr>
</tbody>
</table>