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INSTITUT FÜR INFORMATIK I

Elmar Langetepe

Online Motion Planning

MA INF 1314

Summersemester 2016

Manuscript: Elmar Langetepe



3.1 2-ray search and the Theorem of Gal 61

side) hold and the left hand side of inequality (3.1) is even smaller now. The remaining inequlities (3.3)

are not concerned from this exchange.

The remaining task is to handle the case Jj+1 < Jj. Here we have the problem of maintaining in-

equality (3.1). To overcome this problem we exchange the role of the rays of f j und f j+1 directly after

the index j+1 completely. After index j+1 any original visit of the ray of f j+1 is no applied to the ray

of f j and vice versa. Of course the exchange f ′j = f j+1 and f ′j+1 = f j is maintained. Now we do not have

a problem with inequality (3.1) any more since the ray is visited early enough now. Inequality (3.2) is

also maintained because we have the same next visits as before. Inequalities (3.3) do not change, they

are not influenced by the exchange. In principle for Jj+1 < Jj and f j > f j+1 we exchange two complete

rays beginning with index j.

For example if f1 > f2 holds and J1 = 7 for ray K and J2 = 5 for ray L, then after the exchange we

visit K by f ′1 := f2 then L by f ′2 := f1, later K by f ′5 := f5 and L by f ′7 := f7 and so on. Figure 3.4 shows

an example.

f ′1 := f2

f ′5 := f5

f ′9 := f9

f ′7 := f7

f ′2 := f1

f2

s

f7

f1

K
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f8
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Figure 3.4: A non-periodic and non-monotone strategy. First, we exchange the values f1 and f2 only. But since
J1 = 7 > J2 = 5 holds we fully exchange the role for the corresponding rays K and L.

Altogether, we obtain a C-competitive strategy ( f ′1, f ′2, . . .) with f ′j ≤ f ′j+1 for all j by applying the

above exchange successively.

Finally, we construct a periodic strategy by the same idea. Consider a monotone strategy with a first

index j such that Jj+1 < Jj. We exchange the role of the corresponding rays after step j + 1, which

means that f j and f j+1 remain on their place. Now J′j+1 > J′j holds. The ray with smaller f j is visited

earlier which maintains the ratio, the ray with next at visit Jj s visited later now but the original strategy

maintains the ratio for the corresponding sum with f j and we have f j+1 on the right hand side now. All

other inequalities are not concerned.

Now after this change it might happen that some the monotonicity after step j+1 is no longer given.

Then we apply the first rearrangement again and so on.

Altogether we obtain a monotone strategy with Jj+1 > Jj for all j and the same ratio C. Trivially, if

Jj+1 > Jj holds for all j, this can only mean that Jj = j+m holds for all j. !

3.1.2 Alternative approach: Equality

By Theorem 3.2 we obtained a very general approach for solving motion planning problems optimally.

Somehow we can call this the Optimality of exponential functions. Here we would like to present an

alternative. The corresponding paradigm can be denoted as Optimality by equality. Consider the 2-

ray search problem. The optimal strategy xi = 2i−1 attains the competitive ratio asymptotically, but

never reaches the ratio exactly. Even after the first round we attain 2x1 + 1 ≤ C · 1 and for x1 = 1 and

C = 9 there is some room for the first step. Interestingly the strategy xi = (i+1)2i fulfils the inequality

∑k+1
i=1 xi ≤ C−1

2 xk by equality for all k. This can be easily shown by induction.

Exercise 20 Show that the strategy xi = (i+1)2i attains a competitive ratio of C = 9 and fulfils ∑k+1
i=1 xi =

C−1
2 xk for all k.
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We will now show that this is not given by chance. Assume that there is an optimal C-competitive

strategy for the 2-ray search problem. This means that there is a sequence (x1,x2, . . .) such that
∑k+1

i=1 xi

xk
≤

(C−1)
2 holds for all k. In this case there is also always a strategy (x′1,x

′
2,x
′
3 . . .) with

∑k+1
i=1 x′i
x′k

= (C−1)
2 for all k.

The proof for this statement works as follows: The functional
∑k+1

i=1 xi

xk
is strictly monotonically decreasing

for xk. If we increase xk the functional decreases. On the other hand the
∑k+1

i=1 xi

xk
is strictly increasing for

all x j with j ̸= k. This means that increasing x j for j ̸= k will increase the functional.

We can assume that xi ≥ 0 holds. Now assume that there is a first index k such that inequality holds,

i.e.:
∑k+1

i=1 xi

xk
< (C−1)

2 . If this holds already for the first index k = 0 with x0 := 1 we simply decrease x0 such

that x1 +1 = (C−1)
2 x0 holds. Now consider k > 0 as the smallest index with

∑k+1
i=1 xi

xk
< (C−1)

2 . We decrease

xk in such a ways that
∑k+1

i=1 xi

xk
= (C−1)

2 is given, which is possible in this case. All other inequalities remain

valid. Obviously, we will attain ∑k
i=1 xi

xk−1
< (C−1)

2 for the index k− 1 and we will proceed for k− 1 by the

same argument until finally we reach k = 0 again. Note that by x1 + 1 = (C−1)
2 x0, x0 cannot decrease to

0. Thus for any such first index k we attain a monotonically decreasing sequence (x0,x1, . . . ,xk) that is

bounded. This means that the above procedure will always converge to a sequence (x0,x1, . . . ,xk) such

that
∑

j+1
i=1 xi

x j
= (C−1)

2 for j = 0 to k. This holds for any k. This means that for infinitely many steps there

always exists a strategy that achieves equality in any step. Finally, we make use of a scalar A such that

A · x0 = 1 holds and (1,A · x1, . . . ,A · xk) is the desired sub-strategy.

The above arguments show that such a strategy exists for any k but the procedure is not construc-

tive. Let us now assume that ∑k+1
i=1 xi

xk
= (C−1)

2 holds for all k, we conclude xk+1 = ∑k+1
i=1 xi−∑k

i=1 xi =
(C−1)

2 (xk− xk−1) and we are searching for the solution of the recurrence
(C−1)

2 (xk− xk−1) = xk+1. We

set x1 =
(C−1)

2 = (C−1)
2 (x0− x−1) with starting values x0 = 1 and x−1 = 0. The task is to find the smallest

value for C such that the above recurrence attains a reasonable solution for the 2-ray search problem.

This means that we will have a look at the methods for finding the solutions of recurrences. Here we

concentrate on the methods proposed by [GKP98] for finding the a closed expression for any xk. This

method shows that C ≥ 9 is required, which gives a second proof for the optimal ratio 9.

For solving a recurrence as shown in [GKP98] we can perform 4 steps. The general correctness of

the method is proved in [GKP98].

A) Closed Form: We bring
(C−1)

2 (xk− xk−1) = xk+1 with x−1 := 0 and x0 = 1 into a closed formula

that also holds for the starting values. For comparison to [GKP98] we use the notation g instead of x and

set D := (C−1)
2 . We have g0 = 0, g1 = 1 und gn = D(gn−1−gn−2). By [n = l] we denote a serie that has

value 1 for n = l and value 0 for all other n. We assume gn = 0 for negative n. Thus a closed formula is

given by gn = Dgn−1−Dgn−2 +1 · [n = 1].

B) Building a power serie with coefficients gn: We consider the power serie G(z) :=∑n gnzn. Inserting

the closed form of the preceding paragraph we have:

∑
n

gnzn = D∑
n

gn−1zn−D∑
n

gn−2zn +∑
n

[n = 1]zn

= D∑
n

gnzn+1−D∑
n

gnzn+2 + z

= DzG(z)−Dz2G(z)+ z .

C) Closed form for power serie G(z): From (B) we conclude G(z) = z
1−Dz+Dz2 .

D) Developing the power serie G(z): The remaining task is is to make use of (C) for the precise

development of the power serie. We will sketch the procedure presented in [GKP98]. In general we have



3.1 2-ray search and the Theorem of Gal 63

G(z) = P(z)
Q(z) . In our special case we conclude P(z) = z and Q(z) = 1−Dz+Dz2. By function theory

arguments a serie for G(z) with the precise values for gn is constructed; details are given in [GKP98].

The construction is based on the zeros of Q(z). The main argument is that the zeros of G(z) has to be

real in order to obtain reasonable expressions for gn. The overall conclusion that the zeros of Q(z) are

given by z1,2 =
1
2 ±
√

1
4 −

1
D

. The radicant is negative for D < 4 and there are no real-valued solutions in

this case. The conclusion is that only D≥ 4 (or C ≥ 9, respectively) guarantees reasonable values for gn.

The details of calculating gn precisley from the zeros of G(z) are given in [GKP98]. We would

like to present at least the calculations for the recurrence above for D = 4. First, Q(z) is expressed

by Q(z) = q0(1− p1z)d1 · · · (1− plz)dl where 1
pi

is a zero of Q of order di. In our example we have

Q(z) = (1−2z)2 with q0 = 1, p1 = 2 and d1 = 2.

Now the coefficients gn of G(z) are given by f1(n)pn
1 + · · · fl(n)pn

l where fi(n) is a polynomial of

degree di−1. In our example f1(n) has degree d1−1 = 1 and the coefficient gn of G(z) is f1(n)2n.

Additionally, for the polynomial fi(n) of degree di−1, the leading coefficient ai is presented by

ai =
P
(

1
pi

)

(di−1)!q0 ∏ j ̸=i

(

1− pj

pi

) .

In our special case we have f1(n) = a1n+ a0 with a1 :=
P( 1

2)
(2−1)!1 = 1

2 . Now we have gn =
(

1
2 n+a0

)

2n.

The remaining task is to determine a0. This can be done by the starting values g1 = 1 or g0 = 0. For

1= g1 =
(

1
2 + c

)

2= 1+2a0 we have a0 = 0, the same holds for g0 = 0. Therfore we conclude gn = n2n−1

which is exactly the above presented solution, which attained equality in any step. The competitive ratio

is 9.

Altogether, in this section we have developed different methods for solving discrete motion planning

problems by functionals.

3.1.3 2-ray search with bounded distance

Let us assume that in the beginning the maximal distance D from start to target point is given. This

means that the rays are bounded by length D. We consider the 2-ray search problem; see Figure 3.5.

x2
x4 x5x6

x1
x3

d DD

Figure 3.5: Falls wir wissen, dass das Ziel in einer Distanz D liegt, können wir die Strategie optimieren.

If the goal has precisely distance D from the start, the agents runs distance D to one side, back to the

start and distance D to the opposite side. In the worst-case this gives a ratio of 3 which is optimal. Now

let us assume that the goal is inside an interval [1,D] away from the start, we would like to minimize the

ratio C = 9.

Obviously, the optimal strategy checks precisely distance xk = D in the second last step on one side

and attains the ratio for the last depth xk−1 < D on the opposite side. The step xk+1 can be arbitrarily

long, it will not decrease the ratio any more; see Figure 3.5. Because of these properties we can also ask

for the opposite question. Assume that a ratio C < 9 is given. What is the maximal depth D on both side,

so that any goal in the distance interval [1,D] away from the start will be found with ratio C.

More precisely, we would like to maintain the ratio C < 9 and maximize the second last step xk.

Since C = 9 is the overall optimal factor, for C < 9 we cannot guarantee factor C for distances up t ∞ or

−∞.
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In [HIKL99] it was shown, that for C < 9 the maximal reach will be attained for a strategy that

attains equality in any worst-case step. We can conclude
∑

j+1
i=1 xi

x j
= (C−1)

2 for j = 0,1, . . . ,k− 1 holds,

where x0 = 1 and xk is the maximal depth.

The choice of x0 = 1 stem from the fact, that the goal is at least one step away from the start. If

there is a sub-strategy (x1,x2, . . . ,xk) such that x1 < (C−1)
2 holds. We can simply use a scalar A > 1

such that Ax1 =
(C−1)

2 . The strategy (Ax1,Ax2, . . . ,Axk) is C-competitive and has larger depth Axk. The

argumentation that any inequality has to be fulfilled by equality is given in the proof below.

Let us have a look at the results: For C = 6 we conclude: x1 = 2.5, x2 = 2.5(2.5− 1) = 3.75,

x3 = 2.5(3.75−2.5) = 3.125 < x2, x4 = 2.5(x3− x2)< 0. This means that k is 2 and the strategy attains

optimal reach 3.75, the worst-case is attained for x0 = 1 and x1 = 2.5. For C = 7 we obtain the strategy:

x1 = 3, x2 = 3(3− 1) = 6, x3 = 3(6− 3) = 9, x4 = 3(9− 6) = 9, x5 = 3(9− 9) < x3. We have reach 9

and k equals 4. The worst-case for the ratio is attained at x0 = 1, x1 = 3, x2 = 6 and x3 = 9.

Theorem 3.4 Let C < 9 be the given factor for the 2-ray search problem. For the maximal reach

problem there is always an optimal strategy that attains equality in any step. [HIKL99]

Proof. We would like to develop an alternative proof. Let us assume that there is a strategy that attains

the maximal reach for given C < 9. The goal is at least one step away from the start. We have a sequence

(x1,x2, . . . ,xk) such that
∑

j+1
i=1 xi

x j
≤ (C−1)

2 for j = 0,1, . . . ,k− 1 holds with x0 := 1 and xk is the maximal

depth.

Consider the first index j such that
∑

j+1
i=1 xi

x j
< (C−1)

2 holds. For j = 0 we have x1 <
(C−1)

2 holds. We can

simply use a scalar A1 > 1 such that A1x1 =
(C−1)

2 . The strategy (A1x1,A1x2, . . . ,A1xk) is C-competitive

and has larger depth Axk. In general let us assume that for j > 0 we have ∑
j+1
i=1 xi <

(C−1)
2 x j. We enlarge

x j+1 by factor A j+1 such that ∑
j
i=1 xi +A j+1x j+1 =

(C−1)
2 x j holds. We exchange the current sequence by

(x1,x2, . . . ,x j,A j+1x j+1,A j+1x j+2, . . .) and still guarantee
∑

j+1
i=1 x′i
x′j
≤ (C−1)

2 for j = 0,1, . . . ,k−1. We have

reach x′k = A j+1xk > xk which gives the contradiction. !

Figure 3.6 shows the curve of the function f , where f (C) is the maximal reach that can be attained

for C. For any kink in the curve the strategy makes another turn. The number of turns increases. For

C = 7 we have k = 3 turns and for C = 6 we have k = 2 turns!

The above function f is strictly monotonically increasing in C. This means that by binary search we

can easily compute the best ratio C for given reach R. The corresponding reverse function is shown in

Figure 3.7.

The above equality-paradigm can also be used for the m-ray search problem, if the given depth is

the same on each ray; see [Sch01, Lan00]. For different intervals on the rays up to now no efficient

optimization technique is known. Only for some few rays (< 4) a master thesis shows some results; see

[Web07].

3.2 Searching for a ray in the plane

In this section, we consider the search for the origin, t, of a ray R in the plane, see Figure 3.8. The

searcher has no vision, but recognizes the ray and the ray’s origin as soon as the searcher hits the ray.

The position of the ray is not known in advance. The searcher moves along a path, Π, starting at a given

point, s. Eventually, Π will hit the ray R at a point p and the origin t is detected. The cost of the strategy is

given by the length of the path from s to p (i.e., |Πp
s |), plus the distance |pt| from p to t. We measure the

quality of the path Π for the ray R using the competitive ratio
|Πp

s |+|pt|
|st| ; that is, we compare the length of

the searcher’s path to the shortest path from s to t. We would like to find a search path Π that guarantees

a competitive ratio not greater than C for all possible rays R in the plane. In turn, C should be as small

as possible. Similar problems were discussed by Alpern and Gal [AG03]; for example, searching for an

unknown line in the plane.



3.2 Searching for a ray in the plane 65

C

5

15

20

10

r

3 4 5 6 7 8 9

Figure 3.6: Maximal reach depending on the ratio C < 9.

3.2.1 The Window Shopper Problem

First, we consider the problem of finding a gift along a shopping window. The agent starts somewhere

and looks toward the window. We assume that the item, t, gets into sight if the ray, R, from t to the

seachers position, p, is perpendicular to the window. Then the searcher moves toward t.

This problem can be modelled as follows. W.l.o.g. we assume that the line of sight (i.e., the ray, R,

we are looking for), is parallel to the X -axis, starts in (1,yR) for yR ≥ 0, and emanates toward the left

side of the perpendicular ray R′ (the window) which starts in (1,0). The searcher starts in the origin

s = (0,0); see Figure 3.9. The goal (i.e., the ray’s origin t) is discovered as soon as the searcher reaches

its height, yR. After the searcher has discovered the goal, it moves directly to the goal. Note that the

shortest distance from s to R′ can be fixed to 1 because scaling has no influence on the competitive ratio.

We would like to find a search path, Π, so that for any goal, t, the ratio
|Πp

s |+|pt|
|st| ≤C holds, where C

is the smallest achievable ratio for all search paths.

Theorem 3.5 There is a strategy Π with an optimal competitive factor of 1.059 . . . for searching the

origin of a ray, R, that emanates from a known ray R′ perpendicular to R. [EFK+06]

Proof. Apparently a good search path moves simultaneously along and towards the wall; that is, in

positive X - and Y -direction. Note that the competitive factor for any reasonable strategy converges to 1

for goals with very small Y -coordinate and also for goals with a large Y -coordinate. Therefore, the first

part of our path, Π, is a line segment up to a point (a,b). The second part is a curve, f (x), that converges

to the wall and maintains the competitive factor that was achieved by the line segment in the first part of

the search; see Figure 3.9.

Thus, we solve two tasks.

1. We will design a search path Π that consists of the following three parts (or conditions); see

Figure 3.10(i).

Π1: A straight line segment from (0,0) to some point (a,b) where the competitive ratio strictly

increases from C = 1 to Cmax for goals from (1,0) to (1,b).
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Figure 3.7: Optimal competitive ratio for given reach.

Π2: A strictly monotone curve f from (a,b) to some point (1,D) on R′ where the competitive

ratio is exactly Cmax for all goals from (1,b) to (1,D).

Π3: A ray starting from (1,D) to (1,∞) where the competitive ratio strictly decreases from Cmax

to 1 for goals from (1,D) to (1,∞).

Furthermore, we prove that the full path Π is convex. The competitive ratio of Π is Cmax.

2. We will show that such a path is optimal and the best achievable ratio is Cmax.

We start with the second task. Let us assume that we have designed a search path Π with the given

properties and let us assume that there is an optimal search path K with K ̸= Π, see Figure 3.10(ii).

The path K might hit the ray B from (1,b) to (−∞,b) at a point p1 to the left of (a,b). Then the ratio
|Kp1

s |+|p1(1,b)|
|s(1,b)| is bigger than Cmax = |s(a,b)|+|(a,b)(1,b)|

|s(1,b)| . On the other hand, K might move to the right of

(a,b) and hits Π2 at a point p2 between B and the ray D from (1,D) to (−∞,D). In this case, the length

of K
p2
s has to be bigger than |Πp2

s | because Π is fully convex. Thus, the ratio
|Kp2

s |+|p2(1,p2y )|
|s(1,p2y )|

is bigger

than Cmax =
|Πp2

s |+|p2(1,p2y )|
|s(1,p2y )|

, where p2y
denotes the Y -coordinate of p2. This also holds if K hits R′ first

and p2 is equal to (1,D); see the dotted path in Figure 3.10(ii).

This means that K has to follow Π from s up to some point beyond B and might leave Π2 then. In

this case K has at least the ratio Cmax and Π is optimal, too.
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Figure 3.8: Die Suche nach dem Ursprung t eines Strahles R.
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Figure 3.9: A strategy for the window shopper!

It remains to show that we can design a path with the given properties. As already mentioned, the

motivation for the construction is the following: In the very beginning the ratio starts from 1 and has

to increase for a while, this is true for any strategy. Additionally, any reasonable strategy should be

monotone in x and y. Moving backwards or away from the window will allow shortcuts with a smaller

ratio. Therefore it is reasonable that we will get closer and closer to the window R′ and the factor

should decrease to 1. So, finally, we can hit R′ because at the end the ratio will not be the worst case.

Furthermore, in many applications strategies are designed by the fact that they achieve exactly the same

factor for a set of goals. Altogether, we would like to design a path Π by the properties formulated above,

and — as we already know — such a strategy is optimal.

With the first two conditions for Π1 and Π2 we determine a and b. We consider the line segment

from the origin (0,0) to (a,b) with a,b > 0 to be parametrized by (ta, tb) for t ∈ [0,1]. The competitive

factor for Π1 is given by

C(t) =
t
√

a2 +b2 +1− ta√
1+ t2b2

, t ∈ [0,1] .

We want C(t) to be a monotone and increasing function. From C′(t)≥ 0 ∀t ∈ [0,1] we conclude

C′(t) =
(
√

a2 +b2−a)(1+ t2b2)− (t(
√

a2 +b2−a)+1)tb2

√
1+ t2b2(1+ t2b2)

≥ 0 ∀t ∈ [0,1]

⇔
√

a2 +b2−a≥ tb2 ∀t ∈ [0,1]

⇔
√

a2 +b2−a≥ b2

⇔ a2 +b2 ≥ b4 +2ab2 +a2

⇔ 1−2a≥ b2 .

Hence, a≤ 1−b2

2 follows. From now on we set a := 1−b2

2 . For t = 1 and a := 1−b2

2 we obtain a competitive
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Figure 3.10: An arbitrary search path K is not better than Π.

factor of

√
a2 +b2 +1−a√

1+b2
=

√

(1−b2

2 )2 +b2 +1− 1−b2

2√
1+b2

=

√

1−2b2+b4+4b2

4 + 1
2 +

b2

2√
1+b2

=

√

(1+b2

2 )2 + 1
2(1+b2)

√
1+b2

=
√

1+b2 =: C . (3.4)

We can consider the line segment Π1 also as a function of x ∈ [0,a]. Now, C is the worst case

competitive factor for x ∈ [0,a] and goals t between [1,0] and [1,b].
For Π2 we construct a curve f (x) for x ∈ [a,1] that runs from [a,b] to some point [1,D] and achieves

the ratio C =
√

1+b2 for all goals t between [1,b] and [1,D]. This means that the length of the path of

the searcher (i.e., the line segment up to (a,b), the part of the curve f up to the height yR, and the final

line segment to the goal (1,yR)) is equal to C times the Euclidean distance from the origin (0,0) to the

goal (1,yR). Thus, f can be defined by the differential equation

√

a2 +b2 +1− x+
∫ x

a

√

1+ f ′(t)2 dt =C ·
√

1+ f (x)2. (3.5)

We would like to rearrange equation (3.5) in order to apply standard methods for solving differential

equations. Derivating equation (3.5) and squaring twice gives

√

1+ f ′(x)2−1 =
C

2
·

1
√

1+ f (x)2
·2 f (x) f ′(x)

⇔ 1+ f ′(x)2−2

√

1+ f ′(x)2 +1 =C2 f (x)2 f ′(x)2

1+ f (x)2

⇔ f ′(x)2

[

1−C2 f (x)2

1+ f (x)2

]

+2 = 2

√

1+ f ′(x)2

⇔ f ′(x)4

[

1−C2 f (x)2

1+ f (x)2

]2

+4 f ′(x)2

[

1−C2 f (x)2

1+ f (x)2

]

= 4 f ′(x)2 .

The curve f was assumed to be strictly monotone, which means f ′(x) ̸= 0. Therefore we have

⇔ f ′(x)2

[

1−C2 f (x)2

1+ f (x)2

]2

= 4C2 f (x)2

1+ f (x)2
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⇔ f ′(x)2 =

[
1+ f (x)2

1+(1−C2) f (x)2

]2

4C2 f (x)2

1+ f (x)2

⇔ f ′(x)2 = 4C2 (1+ f (x)2) f (x)2

(1+(1−C2) f (x)2)2

⇔ f ′(x) = 2C

√

1+ f (x)2 f (x)

1+(1−C2) f (x)2
. (3.6)

Note that the point (a,b) = (1−b2

2 ,b) lies on f and C is equal to
√

1+b2. Altogether, we have to

solve the differential equation

y′ = 1 ·2
√

1+b2

√

1+ y2y

1−b2y2
= 1 ·g(y) (3.7)

for y = f (x) with starting point (1−b2

2 ,b).
Equation (3.7) is a first order differential equation y′ = h(x)g(y) with separated variables and point

(k, l) on y. A general solution is given by

∫ y

l

dt

g(t)
=

∫ x

k
h(z)dz ;

see Walter [Wal86]. Thus, we have to solve

∫ y

b

1−b2t2

2
√

1+b2
√

1+ t2t
dt =

∫ x

(1−b2)/2
1 ·dz = x− (1−b2)/2

By simple analysis, we obtain

x =−
b2
√

1+ y2 + arctanh

(

1√
1+y2

)

− arctanh
(

1√
1+b2

)

−
√

1+b2

2
√

1+b2

which is the solution for the inverse function x = f−1(y). By simple analysis we get

x′ =
1

g(y)
=−

(b2y2−1)

2
√

1+ y2y
√

(1+b2)
≥ 0 for y ∈ [0,1/b]

and

x′′ =−
(b2y2 +2y2 +1)

2(1+ y2)3/2√
1+b2y2

≤ 0 for y≥ 0, .

Because x = f−1(y) is concave in the given interval, y = f (x) is convex. Additionally, f−1 attains a

maximum for y = 1
b
.

Altogether we have a situation for the inverse function x = f−1(y) for y ∈
[

0, 1
b

]

as shown in Fig-

ure 3.11.

Now, we have to find a value for b so that f−1(1
b
) is equal to 1, so that f−1 behaves as depicted in

Figure 3.11(ii). That is, we have to find a solution for

1 =−
b2
√

1+ 1
b2 + arctanh

(

1
√

1+ 1

b2

)

− arctanh
(

1√
1+b2

)

−
√

1+b2

2
√

1+b2
. (3.8)

This fixes b and, in turn, D to 1
b . Note that in this case y = f (x) has the desired properties for

x ∈ [a,1] =
[

1−b2

2 ,1
]

.
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Y

R′

(

0, f−1
(

1
b

))

f−1

(i)

X

f−1

(0,1)

(0,0.43 . . .)

(0,1)
R′

(
1
b , f−1

(
1
b

))

Y

X

(ii)

(0.34 . . . ,0.43 . . .)

(0,0) (2.85 . . . ,0)(0.34 . . . ,0)

(2.85 . . . ,1)

(0,0)
(b,0)

(

0, 1−b2

2

) (

b, 1−b2

2

)

(
1
b ,0
)

Figure 3.11: The inverse situation of the window shopper problem. The curve f−1 should hit the line X = 1.

We have already seen that y = f (x) is convex for x ∈ [a,1]. Additionally, the line segment from (0,0)
to (a,b) is convex. To show that the conjunction of both elements is also convex, we have to show that

the tangent to f at (a,b) is equal to a prolongation of the line segment; see Figure 3.11. In other words,

we have to show f−1′(b) = a
b = 1−b2

2b . This is equivalent to 1
g(b) =

1−b2

2b which is obviously true.

By solving equation (3.8) numerically, we get b = 0.34 . . . This gives D = 1
b = 2.859 . . ., a = 1−b2

2 =

0.43 . . . and a worst-case ratio C =
√

1+b2 = 1.05948 . . . The corresponding curve f−1 is shown in

Figure Figure 3.11(ii).

Altogether, by combining Π1 (the line segment), Π2 (the constructed curve f ), and Π3 (the ray from

(1,D) to (1,∞)), we obtain a convex curve with the given properties and an optimal competitive factor

of C =
√

1+b2 = 1.05948 . . . !

3.2.2 General rays in the plane

Now we turn over to arbitrary rays in the plane. We will first show that a logarithmic spiral is an

appropriate competitive strategy, finally we will construct a lower bound. A logarithmic spiral is defined

in polar coordinates by (ϕ,d ·eϕcot(α)) for d > 0 and −∞ < ϕ < ∞ see Figure 3.12 for an example. Note,

that we can scale so that d = 1.

A logarithmic spiral has some nice properties. The center point of the spiral is given by the origin

s = (0,0). The angle α expresses the excentricity of the spiral. For every point p on the spiral the line

through p and s and the tangent Tp on p build the same angle α. For α = π/2 the spirals degenerates

to a circle. For two points a and b on the spiral, the length of the spiral between a and b is given by
1

|cosα|(|bs|− |as|) for |as|> |bs|. This means that the length of the spiral from the center to some point b

is given by 1
|cosα| |bs|, for details see also [BSMM00].

The spiral expands successively and will finally hit every ray in the plane. Obviously, the worst case

is attained for a tangent to the spiral. In the following we denote a spiral path by Π and the corresponding

ratio by CΠ.
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α s

α

p

p′ t

r1

t1

r

Figure 3.12: A logarithmic spiral is defined by an angle α. A tangent to the spiral will maximize the ratio.

Lemma 3.6 Given a logarithmic spiral Π, the ray that maximizes the ratio CΠ is a tangent T to the

spiral.

Proof. Consider a ray r emanating from the point t, and the first intersection p with the spiral; see

Figure 3.12. We can increase the ratio CΠ by rotating r counterclockwise around p until the ray is almost

a tangent to the spiral. Additionally, t1 gets closer to s. Note, that p′ in Figure 3.12 is not actually an

intersection, but the searcher moving on the spiral slightly misses the ray r1 in p′, but detects the ray in

p. However, p′ is arbitrarily close to the spiral; thus, we consider p′ to be a point on the spiral. We call

p′ tangent point. !

Now we will proceed as follows, we will compute an optimal spiral Π given by an optimal angle α
for the orthogonal points, q′, on the tangent Tq, see Figure 3.13. Fortunately, the given ratio CΠ(α) is

the same for all tangents! Afterwards, an adversary strategy can move the starting point of the ray along

the tangent in order to maximize the ratio, see Figure 3.13. This means that the adversary strategy can

choose the angle β.

By the law of sine we have |st|= |sq′|
sinβ and

|tq′|
cosβ = |ts|. Now we have

|πp
s |+|pq′|
|sq′| =CΠ(α) (the ratio for q′)

and
|πp

s |+|pq′|+|q′t|
|st| =: CΠ(α,β) (the ratio for t). Substituting the above dependencies we have: CΠ(α,β) =

CΠ(α)sin(β)+cos(β). Altogether, we first will minimize CΠ(α) over α and then we maximize CΠ(α,β)
over β.

Lemma 3.7 We can minimize the ratio for the closest point, q′, on a tangent Tq by choosing an optimal

angle α. If we attain a ratio CΠ(α) for the orgin q′, an adversary can move the starting point along the

tangent which is determined by an angle β. The ratio will be given by CΠ(α,β) :=CΠ(α)sin(β)+cos(β).

Note, that it makes no sense for the adversary to move the starting point to the right of q′, the ratio

will obviously decrease.

Now, we would like to compute the distance |qq′|. In the following we consider α < π/2 and the

spiral turns counterclockwise, see Figure 3.14. This has the advantage that the angles are positive in the

mathematical sense. Let γ(α) denote the angle between sq and sp, see Figure 3.14. For q := (ϕq,eϕq cot α),
we have p := (ϕq +2π+ γ(α),e(ϕq+2π+γ(α))cot α). The angle γ(α) can be determined by an equation. The

proof of Lemma 3.8 is a simple exercise.

Note, that a line running through q′ = (ϕq′ ,rq′) and perpendicular to a line with angle ϕq′ is given in

polar coordinates by (ϕ,
rq′

cos(ϕ−ϕq′)
). In our case the tangent Tq is perpendicular to the line given by ϕq′

and runs through q′. In turn the angle ϕq′ is given by ϕq−π/2+α.
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π−α

s

β

p

q′
q

Tq

t

Figure 3.13: We would like to optimize the spiral for the closest point, q′, from s on a tangent Tq.

α

s

p

γ(α)

q

Tq

q′

Figure 3.14: Let q′ be the point on Tq with shortest distance to s. If the angle γ(α) in △qsp is given, we can
determine the ratio for q′.

Lemma 3.8 The angle γ(α) := ̸ qsp is given by the solution to

sinα

sin(α− γ(α))
= Ecot α(2π+γ(α)) .

Lemma 3.8 gives us a formula for computing γ(α) at least numerically for every α. Therefore we

will be able to compute the best spiral for a tangent Tq on q.

Theorem 3.9 Given a spiral and a tangent, Tq, to the spiral. Let q′ be the closest point to s on Tq. The

ratio CΠ(q′) for q′ on Tq depends only on the spiral parameter α and is given by

Cq′(α) =
Ecot α(2π+γ(α)))

sinα · cosα
+

Eb(2π+γ(α)) · sin(γ(α))

sin2 α
+ cotα .

Its minimum value is 22.49084026 . . . for cot αopt = 0.11371 . . . or αopt := 1.4575 . . .
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Proof. Consider the triangle △psq, see Figure 3.14. Because q is a point on the spiral we have |sq| =
Ecotα(θq) for some θq. Additionally, we have θp = θq + 2π + γ(α). Further, we have ̸ sqp = π−α.

Applying the law of sine yields

|sp|
sin(π−α)

=
|sp|
sinα

=
|pq|

sin(γ(α))
⇔ |pq| =

Ecot α(θp) sin γ(α)

sin α
=

Ecot α(θq+2π+γ(α)) sin(γ(α))

sinα
.

Because the triangle △sq′q is right angled, we have |qq′| = |sq|cos α = Ecot α(θq) cosα; thus, the

distance |pq′|= |pq|+ |qq′| is given as

|pq′|=
Ecot α(θq+2π+γ(α)) sin(γ(α))

sinα
+Ecotα(θq) cosα .

The length of the arc Πp
s on the spiral from s to p is given by |Πp

s | = E cotα(θq+2π+γ(α))

cosα , Now, using

|sq′|= |sq|sin α = Ecot α(θq) sin α, we can compute the ratio Cq′(α):

Cq′(α) =
|Πp

s |+ |pq′|
|sq′|

=
1

cosα Ecot α(θq+2π+γ(α)) + 1
sinα Ecot α(θq+2π+γ(α)) sinγ(α)+Ecot αθq cosα

Ecot αθq sinα

=
1

cosα Ecot α(2π+γ(α)) + 1
sinα Ecot α(2π+γ(α)) sin γ(α)+ cosα

sinα

=

(
1

sin α · cosα
+

sinγ(α)

sin2 α

)

Ecot α(2π+γ(α)) + cotα .

We observe that Cq′(α) is independent of θq, that is, the value of CΠ(q′) is the same for every given

tangent T . Now, the searcher is allowed to minimize the search costs by choosing an appropriate value

for α. Evaluating Cq′(α) numerically yields a minimum value of 22.49084026 . . . for cotα = 0.11371 . . .
or αopt := 1.4575 . . . !

Finally, an adversary is allowed to choose a starting point, t, along the tangent Tq. By Lemma 3.7

we have to choose β so that CΠ(αopt,β) = C(αopt)sin β+ cosβ is maximal. Therefore we have to

find a solution for C(αopt)cos β− sinβ (first derivative in β) which gives βworst := 1.526363 . . . and

CΠ(αopt,βworst) = 22.51306056 . . .

Corollary 3.10 The spiral strategy with αopt := 1.4575 . . . is optimal among all spirals and obtains a

competitive factor of CΠ(αopt,βworst) = 22.51306056 . . . for angle βworst := 1.526363 . . .

s

t

R

Figure 3.15: A ray, R, that emanates from t and is part of a ray that emanates from s.

Finally, we are interested in a lower bound. To get a lower bound on the competitive ratio for our

problem, we discuss the following subproblem: We require that the ray, R, we are looking for is part of
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a rays that emanates from the searcher’s start point, s (i.e., the start point, s, lies on the the extension of

R to a straight line)

If we consider the full bundle of lines passing through s, the given problem is equivalent to the

problem of searching for a point in the plane as presented by Alpern and Gal [AG03]. We assume that

the searcher detects the goal if it is swept by the radius vector of its trajectory; that is, the searchers knows

the position of the goal as soon as it hits the ray emanating from the goal. Alpern and Gal [AG03] showed

that among all monotone and periodic strategies, a logarithmic spiral represented by polar coordinates

(θ,Ebθ) gives the best search strategy in this setting. A strategy S represented by its radius vector X(θ)
is called periodic and monotone if θ is always increasing and X also satisfies X(θ+2π)≥ X(θ).

The factor of the best achievable monotone and periodic strategy is given by 17.289 . . ., see Alpern

and Gal [AG03]. Note, that the searcher does not have to reach the ray’s origin in this setting.

Unfortunately, it was not shown that a periodic and monotone strategy is the best strategy for this

problem. Alpern and Gal state that it seems to be a complicated task to show that the spiral optimizes

the competitive factor. Thus, the given factor cannot be adapted to be a lower bound to our problem.

Therefore, we consider a discrete bundle of n rays that emanate from the start and which are separated

by an angle α = 2π
n , see Figure 3.16. We are searching for a goal on one of the n rays.1 Again, the goal

is detected if it is swept by the radius vector of the trajectory. Note that if n goes to infinity we are back

to the original problem. But we can neither assume that we have to visit the rays in a periodic order nor

that the depth of the visits increases in every step. Thus, we represent a search strategy, S, as follows: In

the kth step, the searcher hits a ray—say ray i—at distance xk from the origin, moves a distance βkxk−xk

along the ray i, and leaves the ray at distance βkxk with βk ≥ 1. Then, it moves to the next ray within

distance
√

(βkxk)2−2βkxkxk+1 cos γi,i+1 + x2
k+1, see Figure 3.16. Note, that any search strategy for our

problem can be described in this way.

α

xk+2 βk+1xk+1

xk+1

xk

βkxk

Figure 3.16: A bundle of n rays and the representation of a strategy.

Let us assume that the ray i is visited the next time at index Jk. The worst case occurs if the searcher

slightly misses the goal while visiting ray i up to distance xk. Instead, it finds the goal at step xJk
on ray i

arbitrarily close to βkxk. Either we have xJk
> βkxk; that is, the searcher discovers the goal in distance xJk

on ray i and moves xJk
−βkxk to the goal, or we have xJk

< βkxk. In the latter case, the searcher moves

βkxk− xJk
from xJk

and finds the goal by accident. In both cases, the searcher moves |xJk
−βkxk| in the

last step. Altogether, the competitive factor, C(S), is bigger than

|xJk
−βkxk|+∑

Jk−1
i=1 βixi− xi +

√

(βixi)2−2βixixi+1 cosγi,i+1 + x2
i+1

βkxk
.

By simple trigonometry, the shortest distance from βixi to a neighboring ray is given by βixi sin 2π
n .

Fortunately, this distance is smaller than the distance
√

(βixi)2−2βixixi+1 cosγi,i+1 + x2
i+1

1Note that the searcher is not confined to walk on the rays, but can move arbitrarily in the plane; in contrast to the m-ray

search problem.
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to any other ray. Thus, we have

C(S)>
∑

Jk−1
i=1 βixi

βkxk
sin

2π

n
.

Altogether, we have to find a lower bound for
∑

Jk−1

i=1 fi

fk
, where Jk denotes the index of the next visit of the

ray of xk and fi = βixi denotes the search depth in step i. Fortunately, this problem is the same problem

as in the competitive analysis for the usual m-ray problem where the searcher can move only along the

rays. It was shown in Lemma 3.3 (see also Gal [Gal80] and Baeza-Yates et al. [BYCR93]) that for this

problem there is an optimal strategy that visits the rays with increasing depth and in a periodic order; that

is, Jk = k+n and i = k. Applying Theorem 3.2 the best achievable strategy is given by fi = (n/(n−1))i .

Altogether, this results in a function

(n−1)

(
n

n−1

)n

sin
2π

n

for n rays. We can make n arbitrarily big because our construction is valid for every n. Note that we also

have a lower bound for the problem of searching a point in the plane; this lower bound is close to the

factor that is achieved by a spiral search.

Theorem 3.11 For the ray search problem there is no strategy that achieves a better factor than

lim
n→∞

(n−1)

(
n

n−1

)n

sin
2π

n
= 17.079 . . .

Additionally, every strategy for searching a point in the plane achieves a competitive factor bigger then

17.079 . . . (the optimal spiral achieves a factor of 17.289 . . . [Gal80]).
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