Selected Topics in Algorithmics, SS15
 Exercise Sheet "2": Triangulation and Planar Convex Hull
 University of Bonn, Department of Computer Science I

- Written solutions have to be prepared until Wednesday 13th of May, 14:30 pm. There is a letterbox in front of room E. 01 in the LBH building.
- You may work in groups of at most two participants.

Exercise 4: Triangulation by Conflict Lists

(4 Points)
Given a set N of n points in the plane, a triangulation $T(N)$ of N is a maximal planar straight-light graph, i.e., every edge is a straight-line segment, and no edge can be added to maintain the planarity. Let $S_{1}, S_{2}, \ldots, S_{n}$ be a random sequence of N, and let N^{i} be $\left\{S_{1}, S_{2}, \ldots, S_{i}\right\}$. Please develop a randomized algorithm to construct $T(N)$ by computing $T\left(N^{3}\right), T\left(N^{4}\right)$, $\ldots, T\left(N^{n}\right)$ iteratively using the conflict lists. In other words, for $i \geq 3$, obtain $T\left(N^{i+1}\right)$ from $T\left(N^{i}\right)$ by adding S_{i+1}. (Hint: Add three dummy points, p_{1}, p_{2}, and p_{3}, in the infinity such that the outer boundary of $T\left(N^{i} \cup\left\{p_{1}, p_{2}, p_{3}\right\}\right)$ is a triangle whose vertices are p_{1}, p_{2}, and p_{3} for $1 \leq i \leq n$. Then when inserting $S_{i+1}, 0 \leq i \leq n-1, S_{i+1}$ is inside a triangle of $T\left(N^{i} \cup\left\{p_{1}, p_{2}, p_{3}\right\}\right)$, and we separate the triangle into three triangles by S_{i+1}.)

1. Describe the insertion of S_{i+1}
2. Define a conflict relation between a triangle in $T\left(N^{i}\right)$ (i.e., $T\left(N^{i} \cup\right.$ $\left.\left\{p_{1}, p_{2}, p_{3}\right\}\right)$) and a point in $N \backslash N^{i}$
3. Prove the expected cost of inserting S_{i+1} to be $O\left(\frac{n}{i+1}\right)$ (backward analysis for deleting S_{i+1} from $\left.H\left(N^{i+1}\right)\right)$ and the expected cost of construction $T(N)$ to be $O(n \log n)$

Exercise 5: Planar Convex Hull by Conflict Lists (4 Points)

Given a set N of n half-planes in the plane, a convex hull $H(N)$ of N is the intersection of N, Let $S_{1}, S_{2}, \ldots, S_{n}$ be a random sequence of N. and let N^{i} be $\left\{S_{1}, S_{2}, \ldots, S_{i}\right\}$. Please develop a randomized algorithm to construct $H(N)$ by computing $H\left(N^{3}\right), H\left(N^{4}\right), \ldots, H\left(N^{n}\right)$ iteratively using the conflict lists. In other words, for $i \geq 3$, obtain $H\left(N^{i+1}\right)$ from $H\left(N^{i}\right)$ by adding S_{i+1}.

1. Describe the insertion of S_{i+1}
2. Define a conflict relation between a vertex of $H\left(N^{i}\right)$ and a half-plane in $N \backslash N^{i}$
3. Prove the expected cost of inserting S^{i+1} to be $O\left(\frac{n}{i+1}\right)$ (backward analysis for deleting S_{i+1} from $H\left(N^{i+1}\right)$) and the expected cost of construction $H(N)$ to be $O(n \log n)$.

Exercise 6: Triangulation (History Graph)

(4 Points)
Given a set N of n points in the plane, a triangulation $H(N)$ of N is a maximal planar straight-light graph, i.e., every edge is a straight-line segment, and no edge can be added to main the planarity. Let $S_{1}, S_{2}, \ldots, S_{n}$ be a random sequence of N, and let N^{i} be $\left\{S_{1}, S_{2}, \ldots, S_{i}\right\}$. Please develop a randomized algorithm to construct $H(N)$ by computing $H\left(N^{3}\right), H\left(N^{4}\right), \ldots, H\left(N^{n}\right)$ iteratively using the history graph. In other words, for $i \geq 3$, obtain $H\left(N^{i+1}\right)$ from $H\left(N^{i}\right)$ by adding S_{i+1}. (Hint: You can use the three dummy points as Exercise 4.)

1. Describe the parent and child relation in the history graph.
2. Describe the insertion of S_{i+1} using the history graph.
3. Prove the expected cost of inserting S^{i+1} to be $O(\log i)$ and the expected cost of construction $T(N)$ to be $O(n \log n)$
