Problem 1
Let \(n \) points be placed uniformly at random on the boundary of a circle of circumference 1. These \(n \) points divide the circle into \(n \) arcs.

(a) What is the average arc length?

(b) Let \(x \) denote an arbitrary fixed point on the circle. What is the expected length of the arc that contains the point \(x \)?

Problem 2
Find an algorithm for the knapsack problem that runs in the worst case in time \(O(nP) \), where \(n \) is the number of items, all profits \(p_1, \ldots, p_n \in \mathbb{N} \) are natural numbers, and \(P := \sum_{i=1}^{n} p_i \). Why does the existence of such an algorithm not prove \(P = NP \)?

Problem 3
For an instance of the knapsack problem with profits \(p \in \mathbb{R}^n_{\geq 0} \), weights \(w \in \mathbb{R}^n_{\geq 0} \), and capacity \(W \in \mathbb{R} \), we define the winner gap \(\Delta \) to be the difference in profit between the best solution \(x^* \) and the second best solution \(x^{**} \). Formally, let \(\Delta := p^T x^* - p^T x^{**} \), where

\[
\begin{align*}
x^* := & \arg \max \{ p^T x \mid x \in \{0,1\}^n \text{ and } w^T x \leq W \} \\
x^{**} := & \arg \max \{ p^T x \mid x \in \{0,1\}^n \text{ and } w^T x \leq W \text{ and } x \neq x^* \}.
\end{align*}
\]

We assume that there are at least two feasible solutions. Then \(\Delta \) is well-defined. Let the weights be arbitrary and let the profits be \(\phi \)-perturbed numbers from \([0,1]\), i.e., each profit \(p_i \) is chosen independently according some probability density \(f_i : [0,1] \to [0,\phi] \) for some fixed \(\phi \geq 1 \). Show that for any \(\epsilon > 0 \)

\[
\Pr[\Delta \leq \epsilon] \leq n\phi \epsilon.
\]

Problem 4
Give an implementation of the Nemhauser-Ullmann algorithm in Java or C++ with running time \(O(\sum_{i=0}^{n-1} |\mathcal{P}_i|) \), where \(n \) denotes the number of items and \(\mathcal{P}_i \) denotes the Pareto set of the restricted instance that consists only of the first \(i \) items.

Use your implementation to generate the Pareto set of instances in which all profits and weights are chosen uniformly at random from \([0,1]\) for \(n = 10, 20, 30, \ldots \). How does the number of Pareto-optimal solutions and the running time depend on \(n \) in your experiments.