Exercise 20: Line segments and Abstract Voronoi diagram (4 Points)
Consider a set S of n disjoint line segments, and let \mathcal{J} be the $\binom{n}{2}$ bisecting curves among S. Please prove the bisecting system (S, \mathcal{J}) is admissible, i.e., the corresponding Voronoi diagram is an abstract Voronoi diagram.

Exercise 21: Karlsruhe metric (4 Points)
The Karlsruhe metric, also known as the Moscow metric, is a distance measure in a radial city where there is a city center, and roads either circumvent the center or are extended from the center. The distance $d_K(p_1, p_2)$ between two points is $\min(r_1, r_2) \times \delta(p_1, p_2) + |r_1 - r_2|$ if $0 \leq \delta(p_1, p_2) \leq 2$ and $r_1 + r_2$, otherwise, where (r_i, ψ_i) are the polar coordinates of p_i with respect to the center, and $\delta(p_1, p_2) = \min(|\psi_1 - \psi_2|, 2\pi - |\psi_1 - \psi_2|)$ is the angular distance between the two points. Please prove the bisecting curve system in the Karlsruhe metric to be admissible.