Lattices and Minkowsky’s Theorem

Integer Lattices
A lattice point in the integer lattice \mathbb{Z}^d is a point in \mathbb{R}^d with integer coordinates.

Minkowski’s Theorem
Let $C \subseteq \mathbb{R}^d$ be symmetric around the origin (i.e., $C = -C$), convex, and bounded, and suppose that $\text{vol}(C) > 2^d$.
Then C contains at least one lattice point different from 0.

Claim
Let C' be $\frac{1}{2}C$, i.e., $C' = \{\frac{1}{2}x \mid x \in C\}$.
There exists a nonzero integer vector $v \in \mathbb{Z}^d \setminus \{0\}$ such that $C' \cap (C' + v) \neq \emptyset$; i.e., C' and a translate of C' by an integer vector intersect.

Sketch of proof
• By contradiction; suppose the claim is false.
• Let R be a large integer number.
• Consider the family \mathcal{C} of translates of C' by the integer vectors in the cube $[-R, R]^d$ (See figure in the next page):
$$\mathcal{C} = \{C' + v \mid v \in [-R, R]^d \cap \mathbb{Z}^d\}$$
• By assumption, each such translate is disjoint from C', and every two of these translates are disjoint as well.
• All translates are contained in the enlarged cube $K = [-R - D, R + D]^d$, where D denotes the diameter of C':
$$\text{vol}(K) = (2R + 2D)^d \geq |\mathcal{C}|\text{vol}(C') = (2R + 1)^d \text{vol}(C'),$$
and
$$\text{vol}(C') \leq \left(1 + \frac{2D - 1}{2R + 1}\right)^d.$$
• The left hand side is arbitrarily close to 1 for sufficiently large R
• Since $\text{vol}(C')2^{-d}\text{vol}(C) > 1$, the lefthand side, is a fixed number exceeding 1 by a certain amount independent of R.
• There exists a contradiction.
Proof of Minkowski Theorem

• Fix a vector $v \in \mathbb{Z}^d$ as in the Claim, and choose a point $x \in C'' \cap (C'' + v)$.
• $x - v \in C''$.
• Since C'' is symmetric, $v - x \in C''$.
• Since C'' is convex, the midpoint of the segment between x and $v - x$ lies in C'', i.e.,
\[\frac{1}{2}x + \frac{1}{2}(v - x) = \frac{1}{2}v \in C'' \]
Example (A regular forest)
Let K be a circle of diameter 26 centered at the origin. Threes of diameter 0.16 grow at each lattice point within K except for the origin. You stand at the origin. Prove that you cannot see outside this miniforest.

Sketch of Proof
- Assume the contrary that one could see outside along some line l passing through the origin.
- The strip S of width 0.16 with l as the middle line contains no lattice point in K except for the origin.
- In other words, the symmetric convex set $C = K \cap S$ contains no lattice points but the origin.
- Since $\text{vol}(C') > 4$, it contradicts Minkowski’s theorem.

Proposition (Approximating an irrational number by a fraction)
Let $\alpha \in (0, 1)$ be a real number and N be a natural number. Then there exists a pair of natural numbers m, n such that $n \leq N$ and

$$|\alpha - \frac{m}{n}| < \frac{1}{nN}.$$

This proposition implies that there are infinitely many pairs m, n such that $\alpha - \frac{m}{n} < \frac{1}{n^2}$, which is a basic and well-known result in elementary number theory.
Proof of the Proposition

• Consider the set
 \[C = \{(x, y) \in \mathbb{R}^2 \mid -N - \frac{1}{2} \leq x \leq N + \frac{1}{2}, \ |\alpha x - y| < \frac{1}{N}\} \]

• \(C \) is symmetric.

• \(\text{vol}(C) = (2N + 1) \frac{2}{N} > 4. \)

• Therefore, \(C \) contains some nonzero integer lattice point \((n, m)\).

• By symmetry, assume \(n > 0 \).

• By the definition of \(C \), \(n \leq N \), and \(|\alpha n - m| < \frac{1}{N} \). In other words,
 \[|\alpha - \frac{m}{n}| < \frac{1}{nN}. \]
General Lattices

Let \(z_1, z_2, \ldots, z_d \) be a \(d \)-tuple of linearly independent vectors in \(\mathbb{R}^d \).

The **lattice with basis** \(\{ z_1, z_2, \ldots, z_d \} \) is the set of all linear combinations of the \(z_i \) with integer coefficients:

\[
\Lambda = \Lambda(z_1, z_2, \ldots, z_d) = \{ i_1z_1 + i_2z_2 + \cdots + i_dz_d \mid (i_1, i_2, \ldots, i_d) \in \mathbb{Z}^d \}
\]

Remark

A general lattice has in general many different bases. For example, the sets \(\{ (1, 0), (0, 1) \} \) and \(\{ (1, 0), (3, 1) \} \) are both bases of the “standard” lattice \(\mathbb{Z}^2 \).

Determinant of a lattice

Form a \(d \times d \) matrix \(Z \) with the vector \(z_1, \ldots, z_d \) as columns. The **determinant of the lattice** \(\Lambda = \Lambda(z_1, z_2, \ldots, z_d) \), denoted by \(\det \Lambda \) is \(|\det Z| \).

Geometrically, \(\det \Lambda \) is the volume of the parallelepiped \(\{ \alpha_1z_1 + \alpha_2z_2 + \cdots + \alpha_dz_d \mid \alpha_1, \ldots, \alpha_d \in [0, 1] \} \).
Remark

- det Λ is a property of the Λ, and it does not depend on the choice of basis of Λ.
- If Z is the matrix of some basis of Λ, the matrix of every basis of Λ has the form BU, where U is an integer matrix with determinant ±1

Minkowski’s theorem for general lattices

Let Λ be a lattice in \(\mathbb{R}^d \), and let \(C \subseteq \mathbb{R}^d \) be a symmetric convex set with \(\text{vol}(C) > 2^d \text{det} \Lambda \). Then C contains a point of Λ different from 0.

Sketch of Proof

- Let \(\{z_1, \ldots, z_d\} \) be a basis of Λ.
- Define a linear mapping \(f : \mathbb{R}^d \to \mathbb{R}^d \) by \(f(x_1, x_2, \ldots, x_d) = x_1z_1 + x_2z_2 + \cdots + x_dz_d \).
- \(f \) is a bijection and \(\Lambda = f(\mathbb{Z}^d) \).
- For any convex set \(X \),
 \[\text{vol}(f(X)) = \text{det}(\Lambda)\text{vol}(X). \]
 - If \(X \) is a cube, this trivially holds.
 - A convex set can be approximated by a disjoint union of sufficiently small cubes with arbitrary precision.
- Let \(C' \) be \(f^{-1}(C) \).
- \(C' \) is a symmetric convex set with \(\text{vol}(C') = \text{vol}(C)/\text{det} \Lambda > 2^d \).
- By Minkowski’s theorem, \(C' \) contains an integer lattice \(v \) in \(\mathbb{Z}^d \).
- \(C \) contains \(f(v) \), and \(f(v) \) is a lattice point of Λ.

A seemingly more general definition of a lattice

What if we consider integer linear combinations of more than \(d \) vectors in \(\mathbb{R}^d \)?

If we take \(d = 1 \) and the vectors \(v_1 = (1) \) and \(v_2 = \sqrt{2} \), then the integer linear combination \(i_1v_1 + i_2v_2 \) are dense in the real line.

But it is not called a lattice.
Definition
A discrete subgroup of \mathbb{R}^d is a set Λ of \mathbb{R}^d such that whenever $x, y \in \Lambda$, then also $x - y \in \Lambda$ and such that the distance of any two distinct points of Λ is at least δ, for some fixed positive real number $\delta > 0$.

Remark
- If $v_1, v_2, \ldots, v_n \in \mathbb{R}^d$ are vectors with rational coordinates, the set Λ of all their integer linear combinations is a discrete subgroup of \mathbb{R}^d.
- Any discrete subgroup of \mathbb{R}^d whose linear span is all of \mathbb{R}^d is a general lattice. (The following theorem)

Lattice Basis Theorem
Let $\Lambda \subset \mathbb{R}^d$ be a discrete group of \mathbb{R}^d whose linear span is \mathbb{R}^d. Then Λ has a basis: there exists d linearly independent vectors $z_1, z_2, \ldots, z_d \in \mathbb{R}^d$ such that $\Lambda = \Lambda(z_1, z_2, \ldots, z_d)$.

- Prove by induction
- Consider i, $1 \leq i \leq d + 1$, and assume linearly independent vectors $z_1, z_2, \ldots, z_{i-1}$ have already constructed:
 - Let F_{i-1} denotes the $(i - 1)$-dimensional subspace spanned by $z_1, z_2, \ldots, z_{i-1}$.
 - All points of Λ lying in F_{i-1} can be written as integer linear combinations of $z_1, z_2, \ldots, z_{i-1}$.
- If $i = d + 1$, the statement of the theorem holds.
- So consider $i \leq d$ and construct z_i
- Since Λ generates \mathbb{R}^d, there exists a vector $w \in \Lambda$ not lying in the subspace F_{i-1}.
- Let P be i-dimensional parallelepiped determined by $z_1, z_2, \ldots, z_{i-1}$ and by w:
 $$P = \{\alpha_1z_1 + \alpha_2z_2 + \cdots + \alpha_{i-1}z_{i-1} + \alpha_iw \mid \alpha_1, \ldots, \alpha_i \in [0, 1]\}$$
• Among all the points of Λ lying in \(P \) but not in \(F_{i-1} \), choose one nearest to \(F_{i-1} \) and call it \(z_i \).

• If the points of \(\Lambda \cap P \) are written in the form \(\alpha_1 z_1 + \alpha_2 z_2 + \cdots + \alpha_{i-1} z_{i-1} + \alpha_i w \), \(z_i \) is the \(w \) with smallest \(\alpha_i \).

• Let \(F_i \) be the linear space of \(z_1, \ldots, z_i \). Then, if a point \(v \in \Lambda \) lies in \(F_i \), \(v \) can be written as \(\beta_1 z_1 + \beta_2 z_2 + \cdots + \beta_i z_i \) for some real numbers \(\beta_1, \ldots, \beta_i \).

• We will prove that all \(\beta_j \), for \(1 \leq j \leq i \), are all integers, leading to the theorem

• Let \(\gamma_j \) be the fractional part of \(\beta_j \), for \(1 \leq j \leq i \), i.e., \(\gamma_j = \beta_j - \lfloor \beta_j \rfloor \).

• Let \(v' \) be \(\gamma_1 z_1 + \gamma_2 z_2 + \cdots + \gamma_i z_i \).

• \(v' \) must belong to \(\Lambda \) since \(v \) and \(v' \) differ by an integer linear combination of vectors of \(\Lambda \).

• Since \(0 \leq \gamma_j < 1 \), \(v' \) lies in the parallelepiped \(P \).

• We must have \(\gamma_i = 0 \); otherwise, \(v' \) would be nearer to \(F_{i-1} \) than \(z_i \).

• Hence \(v' \in \Lambda \cap F_{i-1} \), and by the inductive hypothesis, we also get that all the other \(\gamma_j \) are 0.

• So all the \(\beta_j \) are integers.
Remark
A general lattice can also be defined as a full-dimensional discrete subgroup of \mathbb{R}^d.

Applications

Two-Square Theorem
Each prime $p \equiv 1 \pmod{4}$ can be written as a sum of two squares:

$$p = a^2 + b^2, a, b \in \mathbb{Z}.$$

Definition
An integer a is called a **quadratic residue** modulo p if there exists an integer x such that

$$x^2 \equiv a \pmod{p}.$$

Otherwise, q is a **quadratic nonresidue** modulo p.

Lemma
If p is a prime with $p \equiv 1 \pmod{4}$, then -1 is a quadratic residue modulo p.

- Let F be the field of residue classes modulo p, and let F^* be $F \setminus \{0\}$.
- $i^2 = 1$ has two solutions in F, namely, $i = 1$ and $i = -1$.
- For any $i \neq \pm 1$, there exists exactly one $j \neq i$ with $ij = 1$, namely, $j = i^{-1}$ is the inverse element in F.
- Therefore, all the elements of $F^* \setminus \{-1, 1\}$ can be divided into pairs such that product of elements in each pair is 1.
- $(p - 1)! = 1 \cdot 2 \cdots (p - 1) \equiv -1 \pmod{p}$.
- Suppose that contradiction that the equation $i^2 = -1$ has no solution in F.
- All the elements in F^* can be divided into pairs such that the product of the elements in each pair is -1.
- There are $(p - 1)/2$ pairs, which is an even number.
- Hence $(p - 1)! \equiv (-1)^{(p-1)/2} = 1$, a contradiction.
Proof of Two-square theorem

- Choose a number q such that $q^2 \equiv -1 \pmod{p}$.
- Consider the lattice $\Lambda = \Lambda(z_1, z_2)$, where $z_1 = (1, q)$ and $z_2 = (0, p)$.
- $\det \Lambda = p$.
- Consider a disk $C = \{ (x, y) \in \mathbb{R}^2 | x^2 + y^2 < 2p \}$.
- The area of C is $2\pi p > 4p = 2^2 \det \Lambda$.
- By Minkowski’s theorem for general lattices, C contains a point $(a, b) \in \Lambda \setminus \{0\}$.
- We have $0 < a^2 + b^2 < 2p$.
- At the same time, $(a, b) = iz_1 + jz_2$ for some $i, j \in \mathbb{Z}^2$, i.e., $a = i, b = iq + jp$.
- $a^2 + b^2 = i^2 + (iq+jp)^2 = i^2 + i^2q^2 + 2iqjp + j^2p^2 \equiv i^2(1+q^2) \equiv 0 \pmod{p}$.
- Therefore $a^2 + b^2 = p$.