k^{th}-order Voronoi Diagrams

References:

Given a set S of n point sites in the Euclidean plane, the k^{th}-order Voronoi diagram $V_k(S)$ is a planar subdivision such that

- each region is associated with a k-element subset H of S and denoted by $VR_k(H, S)$.
- all points in $VR_k(H, S)$ share the same k nearest sites H among S.

$$V_2(S)$$

```
(p, s) {p, q}

q

{q, s}

r

{r, s} {q, r}
```
Property 1
Consider a Voronoi edge e between $\text{VR}_k(H_1, S)$ and $\text{VR}_k(H_2, S)$. H_1 and H_2 only differ by one site. Let $H_1 \setminus H_2$ be $\{p\}$ and $H_2 \setminus H_1$ be $\{q\}$. For all points $x \in e$, $H_1 \cap H_2$ are the $k - 1$ nearest sites of x and both p and q are the kth nearest sites of x.

![Diagram]

General Position Assumption
- no more than than sites are on the same line → $V_k(S)$ is connected.
- no more than three sites are on the same circle → the degree of a Voronoi vertex is exactly 3.

Definition 1
Consider a Voronoi vertex v among $\text{VR}_k(H_1, S)$, $\text{VR}_k(H_2, S)$, and $\text{VR}_k(H_3, S)$.
- v is new if $|H_1 \cup H_2 \cup H_3| = k + 2$. $H_1 = H \cup \{p\}$, $H_2 = H \cup \{q\}$, $H_3 = H \cup \{r\}$, where $|H| = k - 1$. → the circle centered at v and touching p, q, and r will exactly enclose the $k - 1$ sites of H.
- v is old if $|H_1 \cup H_2 \cup H_3| = k + 1$. $H_1 = H \cup \{p, q\}$, $H_2 = H \cup \{q, r\}$, $H_3 = H \cup \{p, r\}$, where $|H| = k - 2$. → the circle centered at v and touching p, q, and r will exactly enclose the $k - 2$ sites of H.
Example

\[H_1 = H \cup \{p\} \]
\[H_2 = H \cup \{q\} \]
\[H_3 = H \cup \{r\} \]
\[|H| = 3 \]

\[H_1 = H \cup \{p, q\} \]
\[H_2 = H \cup \{q, r\} \]
\[H_3 = H \cup \{p, r\} \]
\[|H| = 2 \]

Property 2

\(v \) is a Voronoi vertex among \(\text{VR}_k(H_1, S) \), \(\text{VR}_k(H_2, S) \), and \(\text{VR}_k(H_3, S) \)

(a) \(v \) is new

\[\rightarrow v \text{ is an old Voronoi vertex among } \text{VR}_k(H_1 \cup H_2, S), \text{VR}_k(H_2 \cup H_3, S), \text{VR}_k(H_3 \cup H_1, S). \]

(b) \(v \) is old

\[\rightarrow v \text{ belongs to } \text{VR}_k(H_1 \cup H_2 \cup H_3). \]
Property 3
Consider an edge e between $\text{VR}_k(H_1, S)$ and $\text{VR}_k(H_2, S)$. Then all points $x \in e$ belong to $\text{VR}_k(H_1 \cup H_2)$.

Sketch of proof:
Let $H_1 \setminus H_2$ be $\{p\}$ and $H_2 \setminus H_1$ be $\{q\}$. Since e is a part of the bisector $B(p, q)$ between p and q, the circle centered at x and touching p and q will enclose all the $k-1$ sites of $H_1 \cap H_2$. Therefore, $(H_1 \cap H_2) \cup \{p, q\} = H_1 \cup H_2$ are exactly the $k+1$ nearest sites of x.

Definition 2
For a Voronoi edge e of $V_k(S)$, if one endpoint of e is an old Voronoi vertex, e is called old; otherwise, e is called new.

Property 4
New vertices of $V_k(S)$ decompose $V_k(S)$ into two kinds of connected components:

1. a new Voronoi edge
2. a connected subgraph whose internal nodes are old Voronoi vertices

Each kind induces a Voronoi region of $V_{k+1}(S)$. (The former comes from Property 2 (a) and Property 3, and the latter comes from Property 2(b) and Property 3.)

Definition 3
For $i > 1$, Voronoi regions $\text{VR}_i(H, S)$ of $V_i(S)$ can be categorized into two types:

- **type-1**: $\text{VR}_i(H, S)$ contains one new edge of $V_{i-1}(S)$.
- **type-2**: $\text{VR}_i(H, S)$ contains old vertices of $V_{i-1}(S)$.
Example

Type-1

VR₂({q, s}, S) is a type-1 region because it contains one new edge of V₁(S)

Type-2

Both VR₃({p, q, s}, S) and VR₃({q, r, s}, S) are type-2 regions because they contain old vertices of V₂(S)
Lemma 1
For \(i > 1 \), \(V_{i-1}(S) \cap VR_i(H, S) \) is a tree. \(V_{i-1}(S) \cap VR_i(H, S) = V_{i-1}(H) \cap VR_i(H, S) \)

Sketch of proof
- all points in \(VR_i(H, S) \) share the same \(i \) nearest sites.
- \(V_{i-1}(S) \) partitions \(VR_i(H, S) \) into at most \(t \) sub-regions, and \(t < i \).
- For \(1 \leq j \leq t \), let \(R_j \) be a sub-region of \(V_{i-1}(S) \cap VR_i(H, S) \), let \(H_j \) be the \((i-1)\)-element subset of \(S \) such that \(R_j = VR_{i-1}(H_j, S) \cap VR_i(H, S) \), and let \(H \setminus H_j \) be \(\{s_j\} \).
- For all points \(x \) in \(R_j \), \(H_j \) are the \((i-1)\) nearest sites of \(x \), and \(s_j \) is the \(i \)th nearest site of \(x \).
- In other words, \(s_j \) is the farthest site of \(x \) among \(H \).
- \(V_{i-1}(S) \) forms the farthest site Voronoi diagram of \(H \) inside \(VR_i(H, S) \), i.e., \(V_{i-1}(S) \cap VR_i(H, S) = V_{i-1}(H) \cap VR_i(H, S) \).
- The farthest-site Voronoi diagram is a tree.
- By Property 4, \(V_{i-1}(S) \cap VR_i(H, S) \) is a connected component, and thus \(V_{i-1}(H) \cap VR_i(H, S) \) is a tree.

Corollary 1
If \(VR_i(H, S) \) contains \(m \) old Voronoi vertices of \(V_{i-1}(S) \), \(VR_i(H, S) \) contains \(2m + 1 \) old Voronoi edges of \(V_{i-1}(S) \).

Sketch of proof
- By the generation position assumption, the degree of a Voronoi vertex is 3.
- By Lemma 1, \(V_{i-1}(S) \cap VR_i(H, S) \) is a tree.

Euler formular for a planar subdivision
\[
\nu - \varepsilon + \varphi = 1 + c,
\]
where \(\nu \) is \# of vertices, \(\varepsilon \) is \# of edges, \(\varphi \) is \# of faces, and \(c \) is \# of connected component.
Corollary 2
Under the general position assumption,

- \(E_k = 3(N_k - 1) - S_k \)
- \(I_k = 2(N_k - 1) - S_k \),

where \(E_k \) is \# of edges, \(I_k \) is \# of vertices, \(N_k \) is \# of faces, and \(S_k \) is \# of unbounded faces of \(V_k(S) \).

Theorem 1
Given a set \(S \) of \(n \) point sites in the Euclidean plane, the total number \(N_k \) of regions in \(V_k(S) \) is \(2k(n - k) + k^2 - n + 1 - \sum_{i=1}^{k-1} S_i \), where \(S_i \) is \# of unbounded regions in \(V_i(S) \), and \(S_0 \) is defined to be 0.

proof

- \(I_i, I'_i \) and \(I''_i \) are \# of vertices, new vertices, and old vertices of \(V_i(S) \), respectively.
- \(E_i, E'_i \) and \(E''_i \) are \# of edges, new edges, and old edges of \(V_i(S) \), respectively.
- \(N_i, N'_i \) and \(N''_i \) are \# of regions, type-1 regions, and type-2 regions of \(V_i(S) \), respectively.
- Since an old vertex of \(V_{i+1}(S) \) is a new vertex of \(V_i(S) \),
 \[
 I_{i+1} = I'_{i+1} + I''_{i+1} = I'_{i+1} + I'_i \\
 \rightarrow I''_{i+1} = I_{i+1} - I'_{i+1}
 \]
- \(I_1 = I'_1, E_1 = E'_1, \) and \(E_{i+1} = E'_{i+1} + E''_{i+1} \)
- Order \(N''_{i+2} \) type-2 regions of \(V_{i+2}(S) \), let \(m_j \) be the number of old vertices of \(V_{i+1}(S) \) inside the \(j \)th type-2 region of \(V_{i+2}(S) \), and let \(e_j \) be the number of edges of \(V_{i+1}(S) \) inside the \(j \)th type-2 region of \(V_{i+2}(S) \).
- \(\sum_{j=1}^{N''_{i+2}} m_j = I''_{i+1} = I'_i \) and \(\sum_{j=1}^{N''_{i+2}} e_j = E''_{i+1} \)
- By Corollay 1,
 \[
 E''_{i+1} = \sum_{j=1}^{N''_{i+2}} e_j = \sum_{j=1}^{N''_{i+2}} (2m_j + 1) = 2I'_i + N''_{i+2} \Rightarrow N''_{i+2} = E''_{i+1} - 2I'_i
 \]
• \(N_{i+2} = N_{i+2}' + N_{i+2}'' = E_{i+1}' + (E_{i+1}'' - 2I_i') = E_{i+1} - 2I_i' \)

• \(N_1 = n \) and \(N_2 = E_1' = E_1 = 3(n - 1) - S_1. \)

• Since \(N_{i+2} = E_{i+1}' - 2I_i', \ E_i = 3(N_i - 1) - S_i, \) and \(I_i = 2(N_i - 1) - S_i, \)
 \[N_{k+2} = E_{k+1}' - 2I_k' = 3(N_{k+1} - 1) - S_{k+1} - 2I_k' \]
 \[= 3(N_{k+1} - 1) - S_{k+1} - 2 \sum_{i=1}^{k} (-1)^{k-i} I_i \]
 \[= 3(N_{k+1} - 1) - S_{k+1} - 2 \sum_{i=1}^{k} (-1)^{k-i} (2(N_i - 1) - S_i) \]

• By induction on \(k, \)
 \[N_k = 2k(n - k) + k^2 - n + 1 - \sum_{i=1}^{k-1} S_i \]

Theorem 2

\[N_k = O(k(n - k)) \]

• If \(k \leq n/2, \) by Theorem 1, \(N_k \) is trivially \(O(k(n - k)) \).

• If \(k > n/2, \) \(N_k \) depends on \(\sum_{i=1}^{k-1} S_i \)

• Since \(\sum_{i=1}^{n-1} S_i = n(n - 1), \ \sum_{i=1}^{k-1} S_i = n(n - 1) - \sum_{i=k}^{n-1} S_i \)

• Since \(S_i = S_{n-i}, \ \sum_{i=k}^{n-1} S_i = \sum_{i=1}^{n-k} S_i \)

• \(N_k = 2k(n - k) + k^2 - n + 1 - \sum_{i=1}^{k-1} S_i \)
 \[= 2k(n - k) + k^2 - n + 1 - n(n - 1) + \sum_{i=k}^{n-1} S_i \]
 \[= N_k = 2k(n - k) + k^2 - n + 1 - n(n - 1) + \sum_{i=1}^{n-k} S_i \]

• Since \(\sum_{i=1}^{n-k} S_i \leq (n - k)n \) (recall \# of \(\leq k \)-set),
 \[N_k \leq 2k(n - k) + k^2 - n + 1 - n(n - 1) + (n - k)n = k(n - k) + 1 \]
Theorem 3
$V_{i+1}(S)$ can be obtained from $V_i(S)$ by taking $\text{VR}_i(H, S) \cap V_1(S \setminus H)$ for all $H \subseteq S$ such that $V_i(H, S)$ is non-empty.

Sketch of proof

- $V_1(S \setminus H) \cap \text{VR}_i(H, S) = V_{i+1}(S) \cap \text{VR}_i(H, S)$
 - all points in $\text{VR}_i(H, S)$ share the same i nearest sites H among S
 - all points in $\text{VR}_1(p, S \setminus H)$ share the same nearest site p among $S \setminus H$.
 - all points in $\text{VR}_1(p, S \setminus H) \cap \text{VR}_i(H, S)$ share the same i nearest sites H and $(i+1)^{\text{th}}$ nearest site p among S, implying that $\text{VR}_1(p, S \setminus H) \cap \text{VR}_i(H, S) \subseteq \text{VR}_{i+1}(H \cup \{p\}, S)$
 - It is trivial that $\text{VR}_{i+1}(H \cup \{p\}, S) \cap \text{VR}_i(H, S) \subseteq \text{VR}_1(p, S \setminus H)$,
 - $\text{VR}_1(p, S \setminus H) \cap \text{VR}_i(H, S) = \text{VR}_{i+1}(H \cup \{p\}, S) \cap \text{VR}_i(H, S)$ for $\forall p \in H$

Corollary 3
Assume $\text{VR}_i(H, S)$ has m adjacent regions $\text{VR}_i(H_j, S)$, $1 \leq j \leq m$. Let $Q = \bigcup_{1 \leq j \leq m} H_j \setminus H$. Then $V_{i+1}(S) \cap \text{VR}_i(H, S) = V_1(Q) \cap \text{VR}_i(H, S)$

The proof will be an exercise.

Compute $V_{i+1}(S)$ from $V_i(S)$

- For each nonempty region $\text{VR}_i(H, S)$, compute $V_1(Q) \cap \text{VR}_i(H, S)$ where $\text{VR}_i(H, S)$ has m adjacent regions $\text{VR}_i(H_j, S)$, $1 \leq j \leq m$, and Q is $\bigcup_{1 \leq j \leq m} H_j \setminus H$.
Lemma 2
$V_{i+1}(S)$ can be obtained from $V_i(S)$ in $O(i(n - i) \log n)$ time.

Sketch of proof

- $V_1(Q)$ can be computed in $|Q| \log |Q|$ time.
- $|Q| \leq |\partial VR_i(H, S)|$ where $\partial VR_i(H, S)$ is the boundary of $VR_i(H, S)$
- $O(|\partial VR_i(H, S)| \log |\partial VR_i(H, S)|)$

$$= \log n \sum_{H \subset S, |H| = i, VR_i(H, S) \neq \emptyset} O(|\partial VR_i(H, S)|)$$

Theorem 4
$V_k(S)$ can be computed in $O(k^2 n \log n)$ time.

Sketch of proof

- $V_1(S)$ can be computed in $O(n \log n)$
- $O(n \log n) + \sum_{i=1}^{k-1} O(i(n - i) \log i) = O(k^2 n \log n)$.
Construction by Geometric Duality and Arrangement

Definition 4 (Bisectors)
- For two sites, \(p, q \in S \), the bisector \(B(p, q) \) is \(\{x \in \mathbb{R}^2 \mid d(x, p) = d(x, q)\} \).
- For a site \(p \in S \), let \(B_p \) be \(\{B(p, q) \mid q \in S \setminus \{p\}\} \).

Definition 5
For a site \(p \in S \), the \(k \)-neighborhood of \(p \) is \(\bigcup_{p \in H, H \subseteq S, |H| = k} \text{VR}_k(H, S) \) and denoted by \(\text{VN}_k(p, S) \).

Property 5
\[V_k(S) = \bigcup_{p \in S} \partial \text{VN}_k(p, S) \]

Lemma 3
\(\text{VN}_k(p, S) \) is connected and each edge of \(\partial \text{VN}_k(p, S) \) is a part of the bisector \(B(p, q) \) for some \(q \in S \setminus \{p\} \).
The proof could be a bonus task.

Lemma 4
Consider an edge of \(\partial \text{VN}_k(p, S) \). For any point \(x \in e \), \(\overline{px} \) intersects exactly \(k - 1 \) bisectors of \(B_p \).

Sketch of proof
- W.l.o.g, let \(e \) belong to \(\text{VR}_k(H_1, S) \cap \text{VR}_k(H_2, S) \) and let \(p \) belong to \(H_1 \setminus H_2 \).
- It is clear that \(H_1 \setminus \{p\} \) are the \(k - 1 \) nearest sites of \(x \).
- For any \(q \in H_1 \setminus \{p\} \), \(x \) belongs to \(D(q, p) \), i.e., \(\overline{px} \) intersects \(B(p, q) \). For any \(q \in S \setminus H_1 \), \(x \) does not belongs to \(D(q, p) \), i.e., \(\overline{px} \) does not intersects \(B(p, q) \).
Lemma 5
\[\partial VN_k(p, S) = SK_k(p, B_p) \]

Therefore, computing \(V_k(S) \) is equivalent to computing \(SK_k(p, B_p) \) for all sites \(p \in S \).
Hereafter, we translate \(S \) such that \(p \) is located at \((0, 0)\), and let \(L \) be \(B_p \).
If we know all the vertices of \(SK_k(p, L) \) and their order along \(SK_k(p, L) \) (clockwise or counterclockwise, we can compute \(SK_k(p, L) \)).

Lemma 6
Under the general position assumption, for a vertex \(v \) of \(SK_k(p, B_p) \), \(pv \) intersects \(k - 1 \) or \(k - 2 \) lines of \(B_p \).

Geometric Duality
Consider a function \(\Psi \). For a point \(x = (a, b) \) except the origin, \(\Psi(x) \) is a line \(: ax_1 + bx_2 = 1 \), and for a line \(l : ax_1 + bx_2 = 1 \), \(\Psi(x) \) is a point \((a, b)\).

Lemma 7
• For an edge \(e \) of \(SK_k(p, B_p) \) and any point \(x \in e \), \(\Psi(x) \) partitions the plane such that one half-plane contains the origin and exactly \(k - 1 \) points of \(\Psi(B_p) \).
• For a vertex \(v \) of \(SK_k(p, B_p) \), \(\Psi(v) \) partitions the plane such that one half-plane contains the origin and \(k - 1 \) or \(k - 2 \) points of \(\Psi(B_p) \).
Example
For \(q \in S \setminus \{ p \} \), let \(p_q \) be \(\Psi(B(p, q)) \). Consider \(n = 8 \) and \(k = 4 \).

\[
l_{q,r} \text{ corresponds to a new Voronoi vertex among } VR_k(H_1, S), VR_k(H_2, S), \text{ and } VR_k(H_3, S), \text{ where } H_1 = H \cup \{ p \}, H_2 = H \cup \{ q \}, H_3 = H \cup \{ r \}, \text{ and } H = \{ s, t, u \}.
\]

\[
l \text{ corresponds to a point on a Voronoi edge between } VR_k(H_1, S) \text{ and } VR_k(H_2, S), \text{ where } H_1 = H \cup \{ p \}, H_2 = H \cup \{ q \}, \text{ and } H = \{ s, t, u \}.
\]

\[
l_{q,s} \text{ corresponds to an old Voronoi vertex among } VR_k(H'_1, S), VR_k(H'_2, S), \text{ and } VR_k(H'_3, S), \text{ where } H'_1 = H' \cup \{ p, s \}, H'_2 = H' \cup \{ q, s \}, H'_3 = H \cup \{ p, q \}, \text{ and } H' = \{ t, u \}. \text{ (Note } H'_1 = H_1 \text{ and } H'_2 = H_2 \text{.)}
\]
Let v_1, v_2, \ldots be a sequence of vertices of $\text{SK}_k(p, B_p)$ along the counterclockwise order.

We consider how to compute v_{i+1} from v_i.

- W.l.o.g., we let v_i be the intersection between $B(p, q)$ and $B(p, r)$ and v_{i+1} be $B(p, q)$ and $B(p, s)$. But we do not know s.
- Similarly, for each $q \in S \setminus \{p\}$, let p_q be $\Psi(B(q, p))$.
- $\Psi(v_i)$ is a straight line passing through p_q and p_r.
- Let l be $\Psi(v_i)$, and rotate l at p_q in the direction such that one half-plane contains the origin and exactly $k - 1$ points of $\Psi(B_p)$.
- The rotation will hit p_s first and we obtain v_{i+1}.
- During the rotation, l partition $\Psi(B_p \setminus \{B(p, q)\})$ into the same 2 sets.

Property 6

Let e be an edge of $\text{SK}_k(p, S)$ and belong to $B(p, q)$. Let v be an endpoint of e and v be an intersection between $B(p, q)$ and $B(p, s)$. For any point $x \in e$, let P_1 and P_2 be the 2-partition of $\Psi(B_p \setminus \{B(p, q)\})$ formed by $\Psi(x)$. Then, $\Psi(B(p, s))$ must be one of four tangent points between $\Psi(B(p, q))$ and the two convex hulls of P_1 and P_2.
Lemma 8
$SK_k(p, B_p)$ can be constructed in $O(n \log n + |SK_k(p, B_p)| \log n)$ time.

Sketch of proof

- After the sorting, it takes $O(n)$ time to compute a vertex of $SK_k(p, B_p)$ and then view the vertex as the begining vertex v_1.
- It sufficient to analyze the time for computing v_{i+1} from v_i.
- Assume that v_i is an intersection between $B(p, q)$ and $B(p, r)$.
- Let \mathcal{P}_1 and \mathcal{P}_2 be the 2-partion of $\Psi(B_p \setminus \{p\})$ formed by $\Psi(v_i)$ and let \mathcal{P}_1 belong to the half-plane containing the origin.
- If v_i is a new Voronoi vertex, $|\mathcal{P}_1| = k - 1$.
 - let l be $\Psi(v_i)$
 - rotate l at $\Psi(B(p, q))$ such that \mathcal{P}_1 and $\Psi(B(p, r))$ belongs to different half-planes formed by l.
 - Determine that l first touches the convex hull of \mathcal{P}_1 or that of $\mathcal{P}_2 \cup \{\Psi(B(p, r))\}$
 - Let $\Psi(B(p, s))$ be the first touched point of the first touched convex hull. Then v_{i+1} is the intersection between $B(p, q)$ and $B(p, s)$.
- Otherwise, v_i is an old Voronoi vertex, and $|\mathcal{P}_1| = k - 2$.
 - let l be $\Psi(v_i)$
 - rotate l at $\Psi(B(p, q))$ such that \mathcal{P}_1 and $\Psi(B(p, r))$ belong to the same half-plane formed by l.
 - Determine that l first touches the convex hull of $\mathcal{P}_1 \cup \{\Psi(B(p, r))\}$ or that of \mathcal{P}_2
 - Let $\Psi(B(p, s))$ be the first touched point of the first touched convex hull. Then v_{i+1} is the intersection between $B(p, q)$ and $B(p, s)$.
- Brodal and Jacob proposed a dynamic structure for the convex hulls allowing insertion, deletion, and tangent query in amorted $O(\log n)$ time.
- It takes $O(n \log n)$ time to compute the two initial convex hulls.
- There are $O(|SK_k(p, B_p)|$ insertions, deletions, and tangent queries.
Theorem 5

$V_k(S)$ can be computed in $O(n^2 \log n + k(n - k) \log n)$ time.

Sketch of proof

- $V_k(S) = \bigcup_{p \in S} SK_k(p, B_p)$.
- $\sum_{p \in S} O(n \log n + |SK_k(p, B_p)| \log n) = O(n^2 \log n + k(n - k) \log n)$