Discrete and Computational Geometry, SS 14 Exercise Sheet " 7 ": Minkowskis Theorem and Applications
 University of Bonn, Department of Computer Science I

- Written solutions have to be prepared until Tuesday June 3rd, 14:00 pm. There will be a letterbox in the LBH building, close to Room E01.
- You may work in groups of at most two participants.
- Please contact Hilko Delonge, hilko.delonge@uni-bonn.de, if you want to participate and have not yet signed up for one of the exercise groups.
- If you are not yet subscribed to the mailing list, please do so at https://lists.iai.uni-bonn.de/mailman/listinfo.cgi/lc-dcgeom

Exercise 19: Proof details Two-Squares-Theorem (4 Points)

1. For $p=17$, present the corresponding values of q, a and b, i and j in the proof of the Two-Squares-Theorem (Theorem 11). Finally $p=a^{2}+b^{2}$ for $a, b \in \mathbb{Z}$ has to be fulfilled.
2. Prove the following statement: For the factor ring \mathbb{Z}_{p} for a prime p only $a=\overline{1}$ and $a=-\overline{1}$ gives a solution for $a^{2}=\overline{1}$.
(You can make use of the following statement: $p|a b \Rightarrow p| a$ or $p \mid b$.)

Exercise 20: Minkowskis Theorem

- Present an argument that the Minkowski Theorem (Theorem 7) actually says that 2 lattice points different from the origin will be inside the set C.
- Argue that the boundedness of the set C is not a necessary condition of Theorem 7. Give an example for an unbounded set C that fulfills the conditions of Theorem 7 for \mathbb{R}^{2}.

Exercise 21: Application of Minkowskis Theorem

Consider the regular (5×5) lattice around the origin. Calculate the required expansion (radius r) of the trees at the lattice points so that any line $Y=a X$ hits at least one of the trees. Do the calculation in the following ways:

1. Calculate the radius r directly and precisely by considering the corresponding circles and lines.
(W.l.o.g. only two cases have to be considered!)
2. Make use of the Minkowski Theorem and compute a non-trivial radius r that fulfills the requirement.

Figure 1: The regular (5×5) grid. The line passes the circles.

