Discrete and Computational Geometry, SS 14 Exercise Sheet " 6 ": Abstract Voronoi Diagrams II University of Bonn, Department of Computer Science I

- Written solutions have to be prepared until Tuesday 26th of May, 14:00 pm. There will be a letterbox in the LBH building.
- You may work in groups of at most two participants.
- Please contact Hilko Delonge, hilko.delonge@uni-bonn.de, if you want to participate and have not yet signed up for one of the exercise groups.
- If you are not yet subscribed to the mailing list, please do so at https://lists.iai.uni-bonn.de/mailman/listinfo.cgi/lc-dcgeom

Exercise 16: Randomized Incremental Algorithm for Abstract Voronoi Diagrams (History Graph)

Consider an admissible bisecting curve system (S, \mathcal{J}), and make a general position assumption that no four curves in \mathcal{J} intersect at the same point. Let $s_{1}, s_{2}, \ldots, s_{n}$ be a random sequence of S, and let R^{i} be $\left\{\infty, s_{1}, s_{2}, \ldots, s_{i}\right\}$. Please develop a randomized algorithm to construct the abstract Voronoi diagram $V(S)$ by computing $V\left(R^{2}\right), V\left(R^{3}\right), \ldots, V\left(R^{n}\right)$ iteratively using the history graph. In other words, for $i \geq 2$, obtain $V\left(R^{i+1}\right)$ from $V\left(R^{i}\right)$ by insertion s_{i+1}. Let a configuration be a Voronoi edge of $V\left(R^{i}\right)$, for $2 \leq i \leq n$

1. Define the parent and child relation between a configuration in $V\left(R^{i}\right) \backslash$ $V\left(R^{i+1}\right)$ and a configuration in $V\left(R^{i+1}\right) \backslash V\left(R^{i}\right)$
2. Please prove that if a site conflicts a configuration, there exists a path from the root of the history graph to the configuration along which all configuration is in conflict with the site.
3. Prove that the expected time complexity of inserting s^{i} is $O(\log i)$

Exercise 17: Removal of General Position Assumption Points)

Consider an admissible bisecting curve system (S, \mathcal{J}) without the general position assumption that no four curves in \mathcal{J} intersect at the same point. In other words, more than three curves in \mathcal{J} can intersect at the same point, and the degree of a Voronoi vertex can be more than three. Please complete the following

- Use a constant number of sites to define a Voronoi edge, i.e., formulate a configuration for a Voronoi edge. Note that a site can appear more than once in a configuration.
- Please describe how to update the conflict graph after inserting s into $V(R)$.

Exercise 18: Karlsruhe metric

The Karlsruhe metric, also known as the Moscow metric, is a distance measure in a radial city where there is a city center, and roads either circumvent the center or are extended from the center. The distance $d_{K}\left(p_{1}, p_{2}\right)$ between two points is $\min \left(r_{1}, r_{2}\right) \times \delta\left(p_{1}, p_{2}\right)+\left|r_{1}-r_{2}\right|$ if $0 \leq \delta\left(p_{1}, p_{2}\right) \leq 2$ and $r_{1}+r_{2}$, otherwise, where $\left(r_{i}, \psi_{i}\right)$ are the polar coordinates of p_{i} with respect to the center, and $\delta\left(p_{1}, p_{2}\right)=\min \left(\left|\psi_{1}-\psi_{2}\right|, 2 \pi-\left|\psi_{1}-\psi_{2}\right|\right)$ is the angular distance between the two points. Please prove the bisecting curve system in the Karlsruhe metric to be admissible.

