Exercise 28: Spanners and Closest Pairs (4 Points)

Let S denote a finite point set in \mathbb{R}^d. Let $1 < t \leq 2$ and let $G = (S, E)$ be a t-spanner with vertex set S and edge set E.

a) Show that for at least one closest pair v, w in S the edge $\{v, w\}$ belongs to E. Furthermore, if $t < 2$, this is even true for all closest pairs.

b) Let p be a nearest neighbor of q in S. Does this imply that $\{p, q\}$ belongs to E?

Exercise 29: WSPD and Centers (4 Points)

Prove or disprove the following statement: Two point sets A, B with bounding box $R(A)$ and $R(B)$ are well-separated with parameter s, if and only if there are two circles C_A and C_B of some radius r, where $R(A) \subset C_A$, $R(B) \subset C_B$ and the distance between C_A and C_B is $\geq r \cdot s$, and the center of C_A and of C_B coincides with the center of the bounding box of A and of B, respectively.
Exercise 30: WSPD 2-dimensional Example (4 Points)

Consider the point set $S \subset \mathbb{R}^2$ depicted twice below. Use the algorithm presented in the lecture to construct a WSPD of S, given the separation ratio $s = 1$.

Start with computing the split-tree, and draw the resulting bounding boxes. Use these bounding boxes to construct the WSPD. You may assume that the procedure FindPairs(v, w) only verifies if the two point sets S_v and S_w are well separated with respect to circles, whose center points are located at the center of the corresponding bounding box.