6. Construction of AVD

Finite Part of AVD

- Let Γ be a simple closed curve such that all intersections between bisecting curve lie inside the inner domain of Γ
- Consider a site ∞, define \(J(p, ∞) = J(∞, p) \) to be Γ for all sites \(p \in S \), and \(D(∞, p) \) to be the outer domain of Γ for all sites \(p \in S \).

Incremental Construction

- Let \(s_1, s_2, \ldots, s_n \) be a random sequence of \(S \)
- Let \(R_i = \{∞, s_1, s_2, \ldots, s_i\} \)
- Iteratively construct \(V(R_2), V(R_3), \ldots, V(R_n) \)

General Position Assumption

- No \(J(p, q), J(p, r) \) and \(J(p, t) \) intersect the same point for any four distinct sites, \(p, q, r, t \in S \)
 \(\Rightarrow \) Degree of a Voronoi vertex is 3

Remark

- For \(1 \leq i \leq n \) and for all sites \(p \in R_i \), \(VR(p, R_i) \) is simply connected, i.e., path connected and no hole
- If \(J(p, q) \) and \(J(p, r) \) intersect at a point \(x \), \(J(q, r) \) must pass through \(x \)
Basic Operations

- Given $J(p, q)$ and a point v, determine $v \in D(p, q)$, $v \in J(p, q)$, or $v \in D(q, p)$
- Given a point v in common to three bisecting curves, determine the clockwise order of the curves around v
- Given points $u \in J(p, q)$ and $w \in J(p, r)$ and orientation of these curves, determine the first point of $J(p, r) |_{(w, \infty]}$ crossed by $J(p, q)|_{(v, \infty]}$
- Given $J(p, q)$ with an orientation and points v, w, x on $J(p, q)$, determine if v come before w on $J(p, q) |_{(x, \infty]}$

Notation: Give a connected subset A of R^2, intA, bdA, and clA mean the interior, the boundary, and the closure of A, respectively.

Conflict Graph $G(R)$, where R is R_i for $2 \leq i \leq n$

- bipartitle graph (U, V, E)
- U: Voronoi edges of $V(R)$
- V: Sites in $S \setminus R$
- $E : \{(e, s) \mid e \in V(R), s \in S \setminus R, e \cap VR(s, R \cup \{s\}) \neq \emptyset\}$

 - a conflict relation between e and s.

Remark:

a Voronoi edge is defined by 4 sites under the general position assumption
Lemma 1
Let $R \subseteq S$ and $t \in S \setminus R$. Let e be the Voronoi edge between $VR(p, R)$ and $VR(q, R)$. $e \cap VR(t, R \cup \{t\}) = e \cap R(t, \{p, q, r\})$. (Local Test is enough)

Proof:

\subseteq: Immediately from $VR(t, R \cup \{t\}) \subseteq VR(t, \{p, q, t\})$

\supseteq: Let $x \in e \cap VR(t, \{p, q, t\})$

- Since $x \in e$, $x \in VR(p, R) \cup VR(q, R)$ and $x \notin VR(r, R) \supseteq VR(r, R \cup \{t\})$ for any $r \in R \setminus \{p, q\}$.
- Since $x \in VR(t, \{p, q, t\})$, $x \notin VR(p, \{p, q, t\}) \cup VR(q, \{p, q, t\}) \supseteq VR(p, R \cup \{t\}) \cup VR(q, R \cup \{t\})$
- $x \notin VR(r, R \cup \{t\})$ for any site $r \in R \rightarrow x \in VR(t, R \cup \{t\})$

Insertiong $s \in S \setminus R$ to compute $V(R \cup \{s\})$ and $G(R \cup \{s\})$ from $V(R)$ and $G(R)$. Handle a conflict between s and a Voronoi edge e of $VR(R)$

Lemma 2
$cl e \cap cl VR(s, R \cup \{s\}) \neq \emptyset$ implies $e \cap VR(s, R \cup \{s\}) = \emptyset$

proof

- Let x belong to $cl e \cap cl VR(s, R \cup \{s\})$
- x is an endpoint of e:
 - x is the intersection among three curves in R
 - For any $r \in R$, $J(s, r)$ cannot pass through x due to the general position assumption
 - $x \in D(s, r) \rightarrow$ the neighborhood of $x \in D(s, r)$
 - $\exists y \in e$ belongs to $VR(s, R \cup \{s\})$
- $x \in e \cap bd VR(s, R \cup \{s\})$
 - $x \in J(p, q) \cap J(s, r)$
 - a point $y \in e$ in the neighborhood of x such that $y \in VR(s, R \cup \{s\})$
Let Q be $\text{VR}(s, R \cup \{s\})$

Lemma 3

$Q = \emptyset$ if and only if $\text{deg}_{G(R)}(s) = 0$

Proof (\rightarrow) If $Q = \emptyset$, $\text{deg}_{G(R)}(s) = 0$

(\leftarrow)

- $\text{deg}_{G(R)}(s) = 0$ implies $\text{cl } Q \subseteq \text{int } \text{VR}(r, R)$ for some $r \in R$
- $\text{VR}(r, R \cup \{s\}) = \text{VR}(r, R) - Q$
- Since $\text{VR}(r, R \cup \{s\})$ must be simply connected, $Q = \emptyset$

Lemma 4

Let I be $V(R) \cap \text{bd } Q$.

I is a connected set which intersects $\text{bd } Q$ in at least two points.

Proof:

- $\text{bd } Q$ is a closed curve which does not go through any vertex of $V(R)$ due to the general position assumption.
- Let I_1, I_2, \ldots, I_k be connected components of I
- Claim: I_j, $1 \leq j \leq k$, contains two points of $\text{bd } Q$.
 - If I_j contains no point, $I_j \subseteq \text{int } Q$. In other words, for some $r \in R$, $\text{VR}(r, R)$ contains I_j, contradicting that $\text{VR}(r, R)$ must be simply connected.
 - If I_j intersects exactly one point x on $\text{bd } Q$, let e be the Voronoi edge of $V(R)$ which contains x. Then both sides of e belong to the same Voronoi region. There exists a contradiction.
• Assume the contrary that \(k \geq 2 \)

 - There is a path \(P \subseteq \text{cl } Q - (\cup_{1 \leq j \leq k} I_j) \) connects two points on \(\text{bd } Q \) such that one component of \(Q - P \) contains \(I_1 \) and the other component contains \(I_2 \).

 - Let \(x, y \) be the two endpoints of \(P \) and let \(r \in R \) such that \(P \subseteq \text{VR}(r, R) \).

 - Since \(x, y \notin V(R) \), \(\text{VR}(r, R) - Q \neq \emptyset \rightarrow x, y \in \text{cl } \text{VR}(r, R) \).

 - Since \(x, y \in \text{cl } \text{VR}(r, R) \), there is a path \(P' \subseteq \text{VR}(r, R) \) with endpoints \(x \) and \(y \).

 - \(P \circ P' \) is contained in \(\text{cl } \text{VR}(r, R) \) and contains either \(I_1 \) and \(I_2 \), contradicting \(\text{cl } \text{VR}(r, R) \) is simply connected.
Lemma 5
Let e be an edge of $V(R)$. If $e \cap Q \neq \emptyset$,
- either $e \cap Q = V(R) \cap Q$ and $e \cap Q$ is a single component,
- or $e - Q$ is a single component

Proof
- Assume first $e \cap Q = V(R) \cap Q$
 - Since $V(R) \cap Q$ is connected, $e \cap Q$ is connected
- Assume next $e \cap Q \neq V(R) \cap Q$
 - At least one endpoint of e is contained in Q
 - For every point $x \in e \cap Q$, one of the subpaths of e connecting x to an endpoint of e must be contained in Q
 - $e - Q$ is a single component

Rough Idea
- Let L be $\{e \in V(R) \mid (e, s) \in G(R)\}$
- For every edge $e \in L$, let e' be $e - Q = e - V_R(s, R \cup \{s\})$. If e is an edge between $V_R(p, R)$ and $V_R(q, R)$, $e' = e - D(s, p) = e - D(s, q)$
- Let B be $\{x \in x$ is an endpoint of e' but is not an endpoint of $e\} = V(R) \cap bd\ Q$
- $bd\ Q$ is a cyclic ordering on the points in B
Step 1: Compute e' for each edge $e \in L$

Step 2: Compute B and cyclic ordering on B induced by $\text{bd } Q$

Step 3: Let x_1, \ldots, x_k be the set B in its cyclic ordering ($x_{k+1} = x_1$), and let r_i such that $(x_i, x_{i+1}) \in \text{VR}(r_i, r)$

- For $1 \leq i \leq k$, add the part of $J(r_i, s)$ with endpoints x_i and x_{i+1}

Lemma 6

$V(R \cup \{s\})$ can be constructed from $V(R)$ and $G(R)$ in time $O(\deg_{G(R)}(s)+1)$

Lemma 7

$G(R \cup \{s\})$ can be constructed from $V(R)$ and $G(R)$ in $O(\sum_{(e,s) \in G(R)} \deg_{G(R)}(e))$ time

1. Edges of $V(R \cup \{S\})$ which were alreay edges of $V(R)$ don’t changes

2. Edges of $V(R \cup \{S\})$ which are parts of edges in L
 - consider each edge $e \in L$
 - If $e \subseteq Q$, e has to be deleted from conflict graph.
 - If $e \not\subseteq Q$, $e - Q$ consists at most two subsegment.
 - let e' be one of the subsegments and let t be a site in $S \setminus R \cup \{s\}$.
 - $e' \cap \text{VR}(t, R \cup \{s, t\}) = e' \cap D(t, r) \cap D(t, s) = e' \cap \text{VR}(t, R \cup \{t\}) \cap D(t, s) \subseteq e \cap D(t, s)$
 - Any site t in conflict with e' must be in conflict with e
 - Takes time $O(\sum_{e \in L} \deg_{G(R)}(e)) = O(\sum_{e,s} \deg_{G(R)}(e))$

3. Edges of $\text{VR}(s, R \cup \{s\})$ which are complete new
 - Let e_{12} connect x_1 and x_2 in B
 - Let e_{12} belong to $\text{VR}(p, R)$ such that e_{12} belongs to $J(p, s)$
 - Let $x_1 \in e_1$ of $\text{VR}(p, R)$ and $x_2 \in e_2$ of $\text{VR}(p, R)$
 - Let P be the part of $\text{bd } \text{VR}(p, R)$ which connects x_1 and x_2 and is contained in $\text{cl } Q$.
 - Lemma 8 will prove that If $t \in S \setminus R \cup \{s\}$ is in conflict with e_{12}, t must be in conflict with either e_1, e_2 or one of the edges of P
 - Each edge in L is involved at most twice, takes time $O(\sum_{e,s} \deg_{G(R)}(e))$
Lemma 7
Let $t \in S \setminus (R \cup \{s\})$ and let t conflict with e_{12} in $V(R \cup \{s\})$ (as defined in Lemma 7). t conflicts with e_1, e_2, or one of the edges of P.

Proof:
• By the definition of conflict, a point $x \in e_{12}$ exists such that $x \in VR(t, R \cup \{s, t\}) \subseteq VR(t, R \cup \{t\})$
• Assume the contrary that t does not conflict with e_1, e_2, or one edge of P.
• For any sufficiently small neighborhood of $U(x_1)$ of x_1, $VR(t, R \cup \{s, t\}) \cap U(x_1) \subseteq VR(t, R \cup \{t\}) \cap U(x_1) = \emptyset$, and it is also true for x_2.
• Let p be a site in R such that $e_{12} \subseteq cl\ VR(p, R \cup \{s\})$, implying that $x_1, x_2 \in cl\ VR(p, R \cup \{s\})$
• There is a path P' from x_1 to x_2 completely inside $VR(p, R \{s, t\}) \subseteq VR(p, R \cup \{t\})$.
• The cycle $x_1 \circ P \circ x_2 \circ P'$ contains $VR(t, R \cup \{t\})$ and is contained in $VR(p, R \cup \{t\})$.
• Contradict $VR(p, R \cup \{t\})$ is simply connected.

\[\text{Theorem 1}\]
Let $s \in S \setminus R$. $G(R \cup \{s\})$ and $V(R \cup \{s\})$ can be constructed from $G(R)$ and $V(R)$ in time $O(\Sigma_{(e,s) \in G(R)} deg_{G(R)}(e))$.
Theorem 2
\(V(S) \) can be computed in \(O(n\log n) \) expected time

- \(\sum_{3\leq i\leq n} O(\sum_{(e,s)\in G(R_{i-1})} \deg_{G(R_{i-1})}(e)) \)
- Let \(e \) be a Voronoi edge of \(V(R_i) \) and let \(s \) be a site in \(S \setminus R_i \) which conflicts \(e \).
- The conflict relation \((e, s) \) will be counted only once since the counting only occurred when \(e \) is removed.
 - Let \(s_j \) be the earliest site in the sequence which conflicts with \(e \). Then \((e, s) \) will be counted in \(\deg_{G(R_{j-1})}(e) \)
- Time proportional to the number of conflict relations between Voronoi edges in \(\bigcup_{2\leq i\leq n} V(R_i) \) and sites in \(S \)
- The expected size of conflict history is \(-C_n + \sum_{2\leq i\leq n}(n - j + 1)p_j \)
 - \(C_n \) is the expected size of \(\bigcup_{2\leq i\leq n} V(R_i) \)
 - \(p_j \) is the expected number of Voronoi edges defined by the same two sites in \(V(R_j) \)
- Since \(C_n = O(n) \) and \(p_j = O(1/j) \), the expected run time is \(O(n \log n) \)