Jiří Matoušek, Lecutes on Discrete Geometry
What is computational geometry?

Algorithms for solving geometry problems

Example Convex hulls

Time: $O(n \log n)$

Dynamic Convex hull, 3D convex hull, and convex polytope.

Ketan Mulmuley, Computational Geometry: An Introduction Through Randomized Algorithms

Randomized Incremental Algorithms for Geometry Structure

- Quick Sort and Search
- Vertical Trapezoidal Decomposition
- General Theoretical Foundations
- Dynamic Setting (optional)
A probability space has three components:

1. a sample space Ω, which is the set of all possible outcomes of the random process modeled by the probability space;

2. a family \mathcal{F} representing the allowable events, where each set in \mathcal{F} is a subset of the sample space; and

3. a probability function $Pr : \mathcal{F} \rightarrow R$ satisfying the following:
 - for any event E, $0 \leq Pr(E) \leq 1$
 - $Pr(\Omega) = 1$; and
 - for any finite or countably infinite sequence of pairwise mutually disjoint events E_1, E_2, E_3, \ldots,
 \[
 Pr(\bigcup_{i \geq 1} E_i) = \sum_{i \leq q} Pr(E_i)
 \]

Example 1:
One die

- $\Omega\{1, 2, 3, 4, 5, 6, \}$
- $\mathcal{F} = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 5\}, \{1, 6\}, \{2, 3\}, \{2, 4\}, \{2, 5\}, \{2, 6\}, \{3, 4\}, \{3, 5\}, \{3, 6\}, \{4, 5\}, \{4, 6\}, \{5, 6\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 2, 5\}, \{1, 2, 6\}, \{1, 3, 4\}, \{1, 3, 5\}, \{1, 3, 6\}, \{1, 4, 5\}, \{1, 4, 6\}, \{1, 5, 6\}, \{2, 3, 4\}, \{2, 3, 5\}, \{2, 3, 6\}, \{2, 4, 5\}, \{2, 4, 6\}, \{2, 5, 6\}, \{3, 4, 5\}, \{3, 4, 6\}, \{3, 5, 6\}, \{4, 5, 6\}, \{1, 2, 3, 4\}, \{1, 2, 3, 5\}, \{1, 2, 3, 6\}, \{1, 2, 4, 5\}, \{1, 2, 4, 6\}, \{1, 2, 5, 6\}, \{1, 3, 4, 5\}, \{1, 3, 4, 6\}, \{1, 3, 5, 6\}, \{1, 4, 5, 6\}, \{2, 3, 4, 5\}, \{2, 3, 4, 6\}, \{2, 3, 5, 6\}, \{2, 4, 5, 6\}, \{3, 4, 5, 6\}, \{1, 2, 3, 4, 5\}, \{1, 2, 3, 4, 6\}, \{1, 2, 3, 5, 6\}, \{1, 2, 4, 5, 6\}, \{1, 3, 4, 5, 6\}, \{2, 3, 4, 5, 6\}, \{1, 2, 3, 4, 5, 6\}\}$
 \[|\mathcal{F}| = 36\]
- $Pr(\{1\}) = \frac{1}{6}$, $Pr(\{1, 4, 5\}) = \frac{1}{2}$, \ldots
Example 2:
Two identical dices

- $\Omega = \{\{1,1\}, \{1,2\}, \{1,3\}, \{1,4\}, \{1,5\}, \{1,6\}, \{2,2\}, \{2,3\}, \{2,4\},$
 \{2,5\}, \{2,6\}, \{3,3\}, \{3,4\}, \{3,5\}, \{3,6\}, \{4,4\}, \{4,5\}, \{4,6\},
 \{5,5\}, \{5,6\}, \{6,6\}\} (|\Omega| = 21)$
- $|\mathcal{F}| = 2^{21}$
- $\Pr(\{1,1\}) = \frac{1}{36}$, $\Pr(\{1,4\}) = \frac{1}{18}$, $\Pr(\{\{1,1\}, \{1,4\}\}) = \frac{1}{12}$, $\Pr(\{\{1,3\}, \{1,4\}\}) = \frac{1}{9}$, ...

A random variable X on a sample space Ω is a real-valued function on Ω, i.e., $X : \Omega \to \mathbb{R}$. A discrete random variable is a random variable that takes on only a finite or countably infinite number of values.

Example 3
Sum of two different dices.

- Let X be the random variable representing the sum of the two dices.
- $\Pr(X = 4) = \Pr(\{(1,3), (2,2), (3,1)\}) = \frac{1}{12}$

The expectation of a discrete random variable X, denoted by $E[X]$, is given by

$$E[X] = \sum_i iPr(X = i),$$

where the summation is over all values in the range of X.

Example 3
X is the random variable representing the sum of the two dices.

$$E[X] = \sum_{2 \leq i \leq 12} iPr(X = i)$$

$$= 2 \times \frac{1}{36} + 3 \times \frac{1}{18} + 4 \times \frac{1}{12} + 5 \times \frac{1}{9} + 6 \times \frac{5}{36} + 7 \times \frac{1}{6} + 8 \times \frac{5}{36} + 9 \times \frac{1}{9}$$

$$+ 10 \times \frac{1}{12} + 11 \times \frac{1}{18} + 12 \times \frac{1}{36} = 7$$
[Linearity of Expectations]:
For \(n \) any finite collection of discrete random variable \(X_1, X_2, \ldots, X_n \) with finite expectations,
\[
E\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} E[X_i].
\]

Example 4
\(X \) is the random variable representing the sum of the two dice.
- Let \(X_i \) be the value of the \(i^{\text{th}} \) dice. Then \(X = X_1 + X_2 \).
- \(E[X_i] = \sum_{1 \leq i \leq 6} i \times \frac{1}{6} = 3.5 \)
- \(E[X] = E[X_1 + X_2] = E[X_1] + E[X_2] = 7 \)
1. **Quick Sort And Search**

 Input: a set N of n real numbers (distinct)

 Output: an ordered sequence of N

 Quick-Sort(N)

 1. If $|N| = 1$, return N.
 2. Select a number p from N
 3. Let N_L be \{ l | $l \in N$ and $l < p$ \}
 Let N_R be \{ r | $r \in N$ and $r > p$ \}
 4. If $|N_L| > 0$, $L = $ Quick-Sort(N_L); else $L = \emptyset$
 5. If $|N_R| > 0$, $L = $ Quick-Sort(N_R); else $R = \emptyset$
 6. return a sequence L, p, R

 Example

 $23, 11, 37, 47, 29, 3, 7, 19$

 $3, 7, 11, 19$ \underline{23} $29, 37, 47$

 11, 3, 7, 19

 $3, 7$ \underline{11} \underline{19}$

 37, 47, 29

 29 \underline{37} \underline{47}$

 3, 7

 3 \underline{7}$

 19

 29

 47

 7
Expected Time Complexity

- If a subset has k elements, it takes $O(k)$ comparisons.
- If a level has m subsets, N_1, N_2, \ldots, N_m, since they are distinct, a level needs $\sum_{i=1}^{m} O(|N_i|) = O(n)$.
- Expected size of N_L (or N_R) = $\frac{n}{2}$, expected depth of recursion = $O(\log n)$
- $O(n \log n)$ expected time

Sorting \iff Geometric Structure

An Ordered Sequence = A Partition of Real Line R

Sorting Problem:

Find the partition $H(N)$ of R formed by the given set N of n points.

Search Problem:

Associate a search structure $\tilde{H}(N)$ with $H(N)$ so that, given any point $q \in R$, one can locate the interval in $H(N)$ containing q quickly, e.g., in logarithmic time.
1.1 Randomized Incremental Version of Quick Sort

\(S_1, S_2, \ldots, S_n: \) a random sequence of \(N \)

\(N^0 = \emptyset \)

\(N^i = \{ S_1, S_2, \ldots, S_i \} \)

\(H(N^0) \) is \(R \)

\(H(N^i) \) is the partition of \(R \) by \(N^i \)

Randomized Incremental Construction:

\(H(N^0), H(N^1), H(N^2), \ldots, H(N^n) = H(N). \)

Conflict List:

For each interval \(I \) in \(H(N^i) \), conflict list \(L(I) \) is an unsorted list of points in \(N \setminus N^i \) contained by \(I \), and \(l(I) \) is the size of \(L(I) \).

E.g., in Fig. 2, \(L(I) \) has four points.

Fact

Each point in \(N \setminus N^i \) is related to a unique interval in \(H(N^i) \).

There is a unique edge between a point in \(N \setminus N^i \) and its conflicted interval in \(H(N^i) \).
Adding a point $S = S^{i+1}$ into N^i

1. Find a interval I in $H(N^i)$ which contains S.
2. Separate I by S into I_L and I_R.
3. Compute $L(I_L)$ and $L(I_R)$ by $L(I)$

Adding S takes $O(l(I_L) + l(I_R) + 1)$

1. Finding I takes $O(1)$ due to the unique edge between S and I in the conflict list.
2. Separating I takes $O(1)$ time
3. Computing $L(I_L)$ and $L(I_R)$ takes $O(l(L)) = O(l(I_L) + l(I_R) + 1)$ time.

Backward Time Analysis

Inserting S^{i+1} into $H(N^i) = $ Deleting S^{i+1} from $H(N^{i+1})$

Each point S in N^{i+1} is equally likely to be S^{i+1}.

$I_L(S)$: Interval left to S

$I_R(S)$: Interval right to S

Expected Time of Adding S:

$$\frac{1}{i+1} \sum_{S \in N^{i+1}} O(l(I_L(S)) + l(I_R(S)) + 1)$$

$$\leq \frac{2}{i+1} \sum_{J \in H(N^{i+1})} O(I(J) + 1)$$

Each interval are adjacent to at most two points

$$= O\left(\frac{n}{i+1}\right)$$

Expected Time Complexity of Randomized Incremental Version:

$$\sum_{i=1}^{n} O\left(\frac{n}{i+1}\right) = O(n \log n)$$
1.2 Randomized Binary Tree

\[N = \{ 23, 11, 37, 47, 29, 3, 7, 19 \} \]

\[S_1 \, S_2 \, S_3 \, S_4 \, S_5 \, S_6 \, S_7 \, S_8 \]

Divide-and-Conquer Quick-Sort

Random Binary Tree \(\tilde{H}(N) \) is defined as follows:

- If \(N = \emptyset \), \(\tilde{H}(N) \) is a node corresponding to the whole real line \(R \)
- otherwise,
 - the root of \(\tilde{H}(N) \) is a randomly chosen point \(S \in N \)
 - \(\tilde{H}(N_L) \) and \(\tilde{H}(N_R) \) are defined recursively for the halves of \(R \) on the two sides of \(S \), where \(N_L \) and \(N_R \) are the sets of points in \(N \setminus S \) left to and right to \(S \), respectively.

Search Problem:
Given a point \(q \in R \), we locate the interval in \(H(N) \) containing \(q \) by applying a binary search on \(\tilde{H}(N) \).

Expected search time = expected depth of \(\tilde{H}(N) = O(\log n) \)
1.3 History (On-Line)

Randomized Incremental Version of Quick-Sort through the Random Binary Tree

- Locating the interval using the binary tree

\[S_1, S_2, \ldots, S_n \] is a random sequence of \(N \)

\((23, 11, 37, 47, 29, 3, 7, 19) \)

\[\tilde{H}(N^1) \]

\[\tilde{H}(N^2) \]

\[\tilde{H}(N^3) \]
Property: If S_j is the left child of S_i, S_j must belong to the left Interval of S_i in $H(N^i)$.

Cost of Inserting S_j = Searching which interval S_j is located in

= Length of Search Path

Backward Analysis

For a query pint q, the search cost is analyzed as follows:

- If the search tests S_i,

 q must belong to the left or right interval of S_i in $H(N^i)$

 \rightarrow probability of testing S_i is $2/i$

- Expected length of search path is $\sum_{i=1}^{n} 2/i = O(\log n)$

- Similarly, inserting S_i takes $O(\log i)$ time

Total Time of Constructing $\tilde{H}(N)$:

$$\sum_{i=1}^{n} O(\log i) = O(n \log n)$$
This randomized incremental construction through a random binary tree does not require conflict lists:

An on-line algorithm

\textbf{history}(i)

- $\tilde{H}(N^i)$

- Auxiliary Information
 - Each internal node of $\tilde{H}(N^i)$ records the left and right intervals when it was created.
 - Each interval records the creation and the deletion time (if it is dead).

\textbf{history}(i)

- Contains the entire history of construction, $\tilde{H}(N^0), \tilde{H}(N^1), \ldots, \tilde{H}(N^n)$.
- Allow searching in $\tilde{H}(N^i)$ by the auxiliary information.