6. Construction of AVD

Finite Part of AVD

• Let \(\Gamma \) be a simple closed curve such that all intersections between bisectring curve lie inside the inner domain of \(\Gamma \)
• Consider a site \(\infty \), define \(J(p, \infty) = J(\infty, p) \) to be \(\Gamma \) for all sites \(p \in S \), and \(D(\infty, p) \) to be the outer domain of \(\Gamma \) for all sites \(p \in S \).

Incremental Construction

• Let \(s_1, s_2, \ldots, s_n \) be a random sequence of \(S \)
• Let \(R_i \) be \(\{\infty, s_1, s_2, \ldots, s_i\} \)
• Iteratively construct \(V(R_2), V(R_3), \ldots, V(R_n) \)

General Position Assumption

• No \(J(p, q), J(p, r) \) and \(J(p, t) \) intersect the same point for any four distinct sites, \(p, q, r, t \in S \)
 \(\rightarrow \) Degree of a Voronoi vertex is 3

Remark

• For \(1 \leq i \leq n \) and for all sites \(p \in R_i \), \(VR(p, R_i) \) is simply connected, i.e., path connected and no hole
• If \(J(p, q) \) and \(J(p, r) \) intersect at a point \(x \), \(J(q, r) \) must pass through \(x \)
Basic Operations

- Given \(J(p, q) \) and a point \(v \), determine \(v \in D(p, q) \), \(v \in J(p, q) \), or \(v \in D(q, p) \)
- Given a point \(v \) in common to three bisecting curves, determine the clockwise order of the curves around \(v \)
- Given points \(u \in J(p, q) \) and \(w \in J(p, r) \) and orientation of these curves, determine the first point of \(J(p, r) \) crossed by \(J(p, q) \) \(v \) on \(J(p, q) \) \(x \)
- Given \(J(p, q) \) with an orientation and points \(v, w, x \) on \(J(p, q) \), determine if \(v \) comes before \(w \) on \(J(p, q) \) \(x \)

Notation: Give a connected subset \(A \) of \(R^2 \), int\(A \), bd\(A \), and cl\(A \) mean the interior, the boundary, and the closure of \(A \), respectively.

Conflict Graph \(G(R) \), where \(R \) is \(R_i \) for \(2 \leq i \leq n \)

- bipartitle graph (U, V, E)
- U: Voronoi edges of \(V(R) \)
- V: Sites in \(S \setminus R \)
- \(E : \{ (e, s) | e \in V(R), s \in S \setminus R, e \cap VR(s, R \cup \{s\}) \neq \emptyset \} \)
 - a conflict relation between \(e \) and \(s \).

Remark:

a Voronoi edge is defined by 4 sites under the general position assumption
Lemma 1
Let $R \subseteq S$ and $t \in S \setminus R$. Let e be the Voronoi edge between $\text{VR}(p, R)$ and $\text{VR}(q, R)$. $e \cap \text{VR}(t, R \cup \{t\}) = e \cap R(t, \{p, q, r\})$. (Local Test is enough)

Proof:

\subseteq: Immediately from $\text{VR}(t, R \cup \{t\}) \subseteq \text{VR}(t, \{p, q, t\})$

\supseteq: Let $x \in e \cap \text{VR}(t, \{p, q, t\})$

- Since $x \in e, x \in \text{VR}(p, R) \cup \text{VR}(q, R)$ and $x \notin \text{VR}(r, R) \supseteq \text{VR}(r, R \cup \{t\})$ for any $r \in R \setminus \{p, q\}$.
- Since $x \in \text{VR}(t, \{p, q, t\}), x \notin \text{VR}(p, \{p, q, t\}) \cup \text{VR}(q, \{p, q, t\}) \supseteq \text{VR}(p, R \cup \{t\}) \cup \text{VR}(q, R \cup \{t\})$
- $x \notin \text{VR}(r, R \cup \{t\})$ for any site $r \in R \rightarrow x \in \text{VR}(t, R \cup \{t\})$

Lemma 2
$\text{cl} e \cap \text{cl} \text{VR}(s, R \cup \{s\}) \neq \emptyset$ implies $e \cap \text{VR}(s, R \cup \{s\}) = \emptyset$

proof

- Let x belong to $\text{cl} e \cap \text{cl} \text{VR}(s, R \cup \{s\})$
- x is an endpoint of e:
 - x is the intersection among three curves in R
 - For any $r \in R, J(s, r)$ cannot pass through x due to the general position assumption
 - $x \in D(s, r) \rightarrow$ the neighborhood of $x \in D(s, r)$
 - $\exists y \in e$ belongs to $\text{VR}(s, R \cup \{s\})$
- $x \in e \cap \text{bd} \text{VR}(s, R \cup \{s\})$
 - $x \in J(p, q) \cap J(s, r)$
 - a point $y \in e$ in the neighborhood of x such that $y \in \text{VR}(s, R \cup \{s\})$
Let Q be $\text{VR}(s, R \cup \{s\})$

Lemma 3

$Q = \emptyset$ if and only if $\deg_{G(R)}(s) = 0$

Proof (→) If $Q = \emptyset$, $\deg_{G(R)}(s) = 0$

(←)

- $\deg_{G(R)}(s) = 0$ implies $\text{cl } Q \subseteq \text{int } \text{VR}(r, R)$ for some $r \in R$
- $\text{VR}(r, R \cup \{s\}) = \text{VR}(r, R) - Q$
- Since $\text{VR}(r, R \cup \{s\})$ must be simply connected, $Q = \emptyset$

Lemma 4

Let I be $V(R) \cap \text{bd } Q$.

I is a connected set which intersects $\text{bd } Q$ in at least two points.

Proof:

- $\text{bd } Q$ is a closed curve which does not go through any vertex of $V(R)$ due to the general position assumption.
- Let I_1, I_2, \ldots, I_k be connected components of I
- Claim: I_j, $1 \leq j \leq k$, contains two points of $\text{bd } Q$.
 - If I_j contains no point, $I_j \subseteq \text{int } Q$. In other words, for some $r \in R$, $\text{VR}(r, R)$ contains I_j, contradicting that $\text{VR}(r, R)$ must be simply connected
 - If I_j intersects exactly one point x on $\text{bd } Q$, let e be the Voronoi edge of $V(R)$ which contains x. Then both sides of e belong to the same Voronoi region. There exists a contradiction.
Assume the contrary that $k \geq 2$

- There is a path $P \subseteq \text{cl } Q - (\bigcup_{1 \leq j \leq k} I_j)$ connects two points on $\text{bd } Q$ such that one component of $Q - P$ contains I_1 and the other component contains I_2.

- Let x, y be the two endpoints of P and let $r \in R$ such that $P \subseteq \text{VR}(r, R)$.

- Since $x, y \notin V(R)$, $\text{VR}(r, R \cup \{s\}) = \text{VR}(r, R) - Q \neq \emptyset \rightarrow x, y \in \text{cl VR}(r, R \cup \{s\})$

- Since $x, y \in \text{cl VR}(r, R \cup \{s\})$, there is a path $P' \subseteq \text{VR}(r, R \cup \{s\})$ with endpoints x and y.

- $P \circ P'$ is contained in $\text{cl VR}(r, R)$ and contains either I_1 and I_2, contradicting $\text{cl VR}(r, R)$ is simply connected
Lemma 5
Let e be an edge of $V(R)$. If $e \cap Q \neq \emptyset$,

- either $(e \cap Q = V(R) \cap Q$ or $e \cap Q$ is a single component),
- or $e - Q$ is a single component

\[e \cap Q \]
\[e - Q \]

Proof

- Assume first $e \cap Q = V(R) \cap Q$
 - Since $V(R) \cap Q$ is connected, $e \cap Q$ is connected
- Assume next $e \cap Q \neq V(R) \cap Q$
 - At least one endpoint of e is contained in Q
 - For every point $x \in e \cap Q$, one of the subpaths of e connecting x to
 an endpoint of e must be contained in Q
 - $e \cap Q$ or $e - Q$ is a single component

Rough Idea

- Let L be $\{ e \in V(R) \mid (e, s) \in G(R) \}$
- For every edge $e \in L$, let e' be $e - Q = e - \text{VR}(s, R \cup \{s\})$. If e is an
 edge between VR(p, R) and VR(q, R), $e' = e - D(s, p) = e - D(s, q)$
- Let B be $\{ x \in x$ is an endpoint of e' but is not an endpoint of $e \} = V(R) \cap \text{bd} Q$
- $\text{bd} Q$ is a cyclic ordering on the points in B
Step 1: Compute e' for each edge $e \in L$

Step 2: Compute B and cyclic ordering on B induced by bd Q

Step 3: Let x_1, \ldots, x_k be the set B in its cyclic ordering ($x_{k+1} = x_1$), and let r_i such that $(x_i, x_{i+1}) \in VR(r_i, r)$
- For $1 \leq i \leq k$, add the part of $J(r_i, s)$ with endpoints x_i and x_{i+1}

Lemma 6

$V(R \cup \{s\})$ can be constructed from $V(R)$ and $G(R)$ in time $O(\deg_{G(R)}(s) + 1)$

Lemma 7

$G(R \cup \{s\})$ can be constructed from $V(R)$ and $G(R)$ in $O(\sum_{(e,s) \in G(R)} \deg_{G(R)}(e))$ time

1. Edges of $V(R \cup \{S\})$ which were already edges of $V(R)$ don't change
2. Edges of $V(R \cup \{S\})$ which are parts of edges in L
 - consider each edge $e \in L$
 - If $e \subseteq Q$, e has to be deleted from conflict graph.
 - If $e \not\subseteq Q$, $e - Q$ consists at most two subsegment.
 - let e' be one of the subsegments and let t be a site in $S \setminus R \cup \{s\}$.
 - $e' \cap VR(t, R \cup \{s, t\}) = e' \cap D(t, r) \cap D(t, s) = e' \cap VR(t, R \cup \{t\}) \cap D(t, s) \subseteq e \cap VR(t, R \cup \{t\})$
 - Any site t in conflict with e' must be in conflict with e
 - Takes time $O(\sum_{e \in L} \deg_{G(R)}(e)) = O(\sum_{(e,s) \in G(R)} \deg_{G(R)}(e))$
3. Edges of $VR(s, R \cup \{s\})$ which are complete new
 - Let e_{12} connect x_1 and x_2 in B
 - Let e_{12} belong to $VR(p, R)$ such that e_{12} belongs to $J(p, s)$
 - Let $x_1 \in e_1$ of $VR(p, R)$ and $x_2 \in e_2$ of $VR(p, R)$
 - Let P be the part of bd $VR(p, R)$ which connects x_1 and x_2 and is contained in cl Q.
 - Lemma 8 will prove that If $t \in S \setminus R \cup \{s\}$ is in conflict with e_{12}, t must be in conflict with either e_1, e_2 or one of the edges of P
 - Each edge in L is involved at most twice, takes time $O(\sum_{(e,s) \in G(R)} \deg_{G(R)}(e))$
Lemma 7
Let \(t \in S \setminus (R \cup \{s\}) \) and let \(t \) conflict with \(e_{12} \) in \(V(R \cup \{s\}) \) (as defined in Lemma 7). \(t \) conflicts with \(e_1, e_2, \) or one of the edges of \(P \).

Proof:

- By the definition of conflict, a point \(x \in e_{12} \) exists such that \(x \in VR(t, R \cup \{s, t\}) \subseteq VR(t, R \cup \{t\}) \)
- Assume the contrary that \(t \) does not conflict with \(e_1, e_2, \) or one edge of \(P \).
- For any sufficiently small neighborhood of \(U(x_1) \) of \(x_1 \), \(VR(t, R \cup \{s, t\}) \cap U(x_1) \subseteq VR(t, R \cup \{t\}) \cap U(x_1) = \emptyset \), and it is also true for \(x_2 \).
- Let \(p \) be a site in \(R \) such that \(e_{12} \subseteq cl \ VR(p, R \cup \{s\}) \), implying that \(x_1, x_2 \in cl \ VR(p, R \cup \{s\}) \)
- There is a path \(P' \) from \(x_1 \) to \(x_2 \) completely inside \(VR(p, R \{s, t\}) \subseteq VR(p, R \cup \{t\}) \).
- The cycle \(x_1 \circ P \circ x_2 \circ P' \) contains \(VR(t, R \cup \{t\}) \) and is contained in \(VR(p, R \cup \{t\}) \).
- contradict \(VR(p, R \cup \{t\}) \) is simply connected

![Diagram](image-url)

Theorem 1
Let \(s \in S \setminus R \). \(G(R \cup \{s\}) \) and \(V(R \cup \{s\}) \) can be constructed from \(G(R) \) and \(V(R) \) in time \(O(\sum_{(e,s) \in G(R)} deg_{G(R)}(e)) \)
Theorem 2

$V(S)$ can be computed in $O(n \log n)$ expected time

- $\sum_{3 \leq i \leq n} O(\sum_{(e, s) \in G(R_{i-1})} \deg_{G(R_{i-1})}(e))$

- Let e be a Voronoi edge of $V(R_i)$ and let s be a site in $S \setminus R_i$ which conflicts e.

- The conflict relation (e, s) will be counted only once since the counting only occurred when e is removed
 - Let s_j be the earliest site in the sequence which conflicts with e. Then (e, s) will be counted in $\deg_{G(R_{j-1})}(e)$

- Time proportional to the number of conflict relations between Voronoi edges in $\bigcup_{2 \leq i \leq n} V(R_i)$ and sites in S

- The expected size of conflict history is $-C_n + \sum_{2 \leq i \leq n} (n - j + 1)p_j$
 - C_n is the expected size of $\bigcup_{2 \leq i \leq n} V(R_i)$
 - p_j is the expected number of Voronoi edges defined by the same two sites in $V(R_j)$

- Since $C_n = O(n)$ and $p_j = O(1/j)$, the expected run time is $O(n \log n)$